

(19) 日本国特許庁(JP)

## (12) 公表特許公報(A)

(11) 特許出願公表番号

特表2004-529641  
(P2004-529641A)

(43) 公表日 平成16年9月30日(2004.9.30)

(51) Int.Cl.<sup>7</sup>

AO1K 15/02

F 1

AO1K 15/02

テーマコード(参考)

AO1K 67/00

AO1K 67/00

4C038

// A61B 5/00

A61B 5/14 310

4C117

A61B 5/145

A61B 5/00 101E

審査請求 未請求 予備審査請求 有 (全 105 頁)

|               |                              |
|---------------|------------------------------|
| (21) 出願番号     | 特願2002-580712 (P2002-580712) |
| (86) (22) 出願日 | 平成14年4月17日 (2002.4.17)       |
| (85) 翻訳文提出日   | 平成15年10月17日 (2003.10.17)     |
| (86) 國際出願番号   | PCT/TR2002/000016            |
| (87) 國際公開番号   | W02002/082892                |
| (87) 國際公開日    | 平成14年10月24日 (2002.10.24)     |
| (31) 優先権主張番号  | 2001/01003                   |
| (32) 優先日      | 平成13年4月17日 (2001.4.17)       |
| (33) 優先権主張国   | トルコ (TR)                     |
| (31) 優先権主張番号  | 2001/01994                   |
| (32) 優先日      | 平成13年7月11日 (2001.7.11)       |
| (33) 優先権主張国   | トルコ (TR)                     |
| (31) 優先権主張番号  | 2001/03372                   |
| (32) 優先日      | 平成13年11月26日 (2001.11.26)     |
| (33) 優先権主張国   | トルコ (TR)                     |


|           |                                                                        |
|-----------|------------------------------------------------------------------------|
| (71) 出願人  | 502456356<br>クルト メーメット<br>トルコ O 1 9 6 0 アダナ セイハン<br>サリサカル フアブリカシ サリサカル |
| (74) 代理人  | 100082500<br>弁理士 足立 勉                                                  |
| (72) 発明者  | クルト メーメット<br>トルコ O 1 9 6 0 アダナ セイハン<br>サリサカル フアブリカシ サリサカル              |
| F ターム(参考) | 4C038 KK00 KK01 KK04<br>4C117 XA10 XB01 XB20 XE17 XE23<br>XE24 XH14    |

最終頁に続く

(54) 【発明の名称】自動式動物訓練装置

## (57) 【要約】

本発明は、世界中でレースに出場する特に馬、ラクダあるいは同種の動物のための、身体能力を向上させ、シミュレーション手段の役割を果たす自動式動物訓練システムに関するものである。



**【特許請求の範囲】****【請求項 1】**

柔軟な材料によって覆われた側部カバー及び後部カバーを備え、トラクター手段によって動かされる動物訓練装置であって、該動物訓練装置は動物を連結するための連結手段(1、2、3)と、該訓練装置の上方を囲い、脚部が該訓練装置の側部に設置されている少なくとも1つの凸状構造物(7)とを備え、一端が動物に載っている鞍(16)に連結され他端が該凸状構造物(7)に連結されている鞍連結手段(4)が、必要な場合に動物を吊り下げるために備えられている動物訓練装置と、

凸形の形状を有し地面に固定されている複数のフレーム(29)と、地面に固定され前記フレーム(29)を貫いて伸びる複数の側部ガイド(32)と、該側部ガイド上に設置された案内用のホイール(35)と、前記フレーム(29)の最上部に設置され該フレームを貫いて伸びる上部ガイド(26)及び該上部ガイド内に設置された案内用のホイール(35)とを備えた訓練前システムと、

側部、後部及び上部が閉鎖されており、前記訓練装置及び、コンピュータ(68)、EKG装置、血液テスト分析器(73)及び内視鏡検査要素を含む可動検査室(63)を備えた移動装置(66)とを備えている自動式動物訓練システム。

**【請求項 2】**

前記連結手段が、動物の口部にあるはみ(25)に連結されるはみ連結手段(1)と、動物の頭部にある頭勒(24)に連結される頭勒連結手段(2)と、動物の胸部にある胸部バンド(23)に連結される胸部バンド連結手段(3)とを含むことを特徴とする、請求項1に記載の自動式動物訓練システム。

**【請求項 3】**

前記鞍連結手段(4)は、一端がリング(22)により鞍(16)に連結され、他端がモータ(6)により駆動される少なくとも1つのドラム(5)上に巻きつけられおり、該ドラム(5)及び該モータ(6)が好ましくは前記凸状構造物(7)の上部に設置されており、センサが動物の質量を感知して該モータを作動させることを特徴とする、先行する請求項の内のいずれか1つに記載の自動式動物訓練システム。

**【請求項 4】**

前記鞍(16)が好ましくは化学作用に基づくシリコン、樹脂、あるいはゴム材料から製造され、10乃至70kgの質量を支持することが可能であることを特徴とする、先行する請求項の内のいずれか1つに記載の自動式動物訓練システム。

**【請求項 5】**

前記鞍(16)が、前記ドラム(5)及び該ドラムを作動させるモータ(6)により上方及び下方に動かされ、前記鞍(16)の移動を調整するためにロック手段が備えられていることを特徴とする、先行する請求項の内のいずれか1つに記載の自動式動物訓練システム。

**【請求項 6】**

複数の紐手段(19、20、21)が前記訓練装置の側面に配設されており、前記連結手段(1、2、3)に連結されていることを特徴とする、先行する請求項の内のいずれか1つに記載の自動式動物訓練システム。

**【請求項 7】**

前記紐手段の数が好ましくは3本であり、はみ紐(19)が前記はみ連結手段(1)に連結され、頭勒紐(20)が前記頭勒連結手段(2)に連結され、胸部バンド紐(21)が前記胸部バンド連結手段(3)に連結されていることを特徴とする、先行する請求項の内のいずれか1つに記載の自動式動物訓練システム。

**【請求項 8】**

複数のばね(11、12、13)がそれぞれの一端において前記訓練装置の本体に連結され、他端において前記紐(13、20、21)に連結されていることを特徴とする、先行する請求項の内のいずれか1つに記載の自動式動物訓練システム。

**【請求項 9】**

10

20

30

40

50

はみばね（11）が前記はみ紐（19）に連結され、頭勒ばね（12）が前記頭勒紐（20）に連結され、胸部バンドばね（13）が前記胸部バンド紐（21）に連結されていることを特徴とする、先行する請求項の内のいずれか1つに記載の自動式動物訓練システム。

【請求項10】

複数の封鎖部（8）が、前記訓練装置の前記凸状構造物（7）と前記側部との連結点に設置され、それによって前記訓練装置内にいる動物の脚が該装置を乗り越えるのを回避していることを特徴とする、先行する請求項の内のいずれか1つに記載の自動式動物訓練システム。

【請求項11】

前記訓練装置の前記側部の部分に対応する湾曲カバー（9）が備えられ、それによって動物の機嫌が悪い場合に動物の後脚が傷つくのを回避していることを特徴とする、先行する請求項の内のいずれか1つに記載の自動式動物訓練システム。

【請求項12】

少なくとも1つの移動可能な探知器（10）が前記動物訓練装置の後部に設置され、該移動可能な探知器（10）が、好ましくは油圧機構である少なくとも1つの押圧手段（14）によって前方及び後方に動かされることを特徴とする、先行する請求項の内のいずれか1つに記載の自動式動物訓練システム。

【請求項13】

少なくとも1つの移動可能な探知器が前記動物訓練装置の前部に設置され、該探知器が、好ましくは油圧機構である少なくとも1つの押圧手段によって前方及び後方に動かされることを特徴とする、先行する請求項の内のいずれか1つに記載の自動式動物訓練システム。

【請求項14】

前記側部に配設された複数の連結部（47）を中心として側部を回転させることにより前記後部（カバー）が開閉可能であり、それによって本実施形態が移動可能な後部カバー（45）及び固定された前部カバー（46）を規定していることを特徴とする、先行する請求項の内のいずれか1つに記載の自動式動物訓練システム。

【請求項15】

少なくとも1つの作動手段（48）が一端において前記後部カバー（45）に固定され、他端において前記前部カバー（46）に固定されていることを特徴とする、先行する請求項の内のいずれか1つに記載の自動式動物訓練システム。

【請求項16】

前記作動手段（48）がシリンダ-ピストン機構であることを特徴とする、請求項15に記載の自動式動物訓練システム。

【請求項17】

前記訓練装置の前部に前部封鎖ハウジング（49）が設置され、該前部封鎖ハウジング（49）内で前部封鎖要素（50）が移動可能であることを特徴とする、先行する請求項の内のいずれか1つに記載の自動式動物訓練システム。

【請求項18】

少なくとも1つの作動手段（51）が前部封鎖要素（50）を動かすために備えられていることを特徴とする、請求項17に記載の自動式動物訓練システム。

【請求項19】

前記作動手段がシリンダ-ピストン機構であることを特徴とする、請求項18に記載の自動式動物訓練システム。

【請求項20】

前記側部カバー内に複数のエアバッグ（53）が配設されていることを特徴とする、先行する請求項の内のいずれか1つに記載の自動式動物訓練システム。

【請求項21】

開口部（54）が前記エアバッグ（53）を備えていることを特徴とする、先行する請求

10

20

30

40

50

項の内のいずれか1つに記載の自動式動物訓練システム。

【請求項22】

前記エアバッグ(53)を膨らませるためにコンプレッサ(55)が備えられ、該コンプレッサ(55)から前記訓練装置に受け入れられる空気を操作するために接続パイプ(56)が備えられ、前記訓練装置に空気取り入れ口(57)が備えられていることを特徴とする、先行する請求項の内のいずれか1つに記載の自動式動物訓練システム。

【請求項23】

前記フレーム(29)が少なくとも1つのフレーム上部要素(30)及び少なくとも1つのフレーム下部要素(31)を含んでいることを特徴とする、先行する請求項の内のいずれか1つに記載の自動式動物訓練システム。

10

【請求項24】

前記側部ガイドを地面に固定するために複数の脚部(33)が備えられていることを特徴とする、請求項1及び23の内のいずれか1つに記載の自動式動物訓練システム。

【請求項25】

前記上部ガイド(26)内に複数のホイール(27)が配設され、少なくとも1つのモータ(36)が該ホイール(27)を駆動することを特徴とする、請求項1、23乃至24の内のいずれか1つに記載の自動式動物訓練システム。

【請求項26】

前記ホイールにプレート(34)が取り付けられて動物がその中に配置され、堅固なプレート支持部(28)が該プレート(34)に結合されていることを特徴とする、請求項1、23乃至25の内のいずれか1つに記載の自動式動物訓練システム。

20

【請求項27】

前記鞍連結手段(4)が一端において前記ホイール(27)に連結され、他端において動物に載っている鞍(16)に連結されていることを特徴とする、請求項1、23乃至26の内のいずれか1つに記載の自動式動物訓練システム。

【請求項28】

前記はみ連結手段(1)が一端において動物の口部にある前記はみ(25)に連結され、他端において前記側部ガイド(32)内を移動可能なホイールに連結されており、前記頭勒連結手段(2)が一端において動物の頭部にある前記頭勒(24)に連結され、他端において前記側部ガイド(32)内を移動可能なホイールに連結されていることを特徴とする、請求項1、23乃至27の内のいずれか1つに記載の自動式動物訓練システム。

30

【請求項29】

前記はみ連結手段(1)が一端において前記はみ(25)に連結され、他端において前記プレート(34)に連結されており、前記頭勒連結手段(2)が一端において前記頭勒(24)に連結され、他端において前記プレート(34)に連結されていることを特徴とする、請求項1、23乃至28の内のいずれか1つに記載の自動式動物訓練システム。

【請求項30】

前記モータ(36)が一端において前記プレート(34)の側面に連結され、他端においてホイール(27)により前記側部ガイド(32)に連結されていることを特徴とする、請求項1、23乃至29の内のいずれか1つに記載の自動式動物訓練システム。

40

【請求項31】

前記訓練前装置を1つのトラクター手段によってけん引する場合、ホイール(27)の取り付けられた単一のけん引モータ(36)が備えられ、各訓練前装置に堅固な連結手段が連結されることを特徴とする、請求項1、23乃至30の内のいずれか1つに記載の自動式動物訓練システム。

【請求項32】

前記訓練装置を支持するために、下部に歯(40)が形成されている複数の可動台(41)が設けられ、該可動台(41)を駆動するために、少なくとも1つの作動歯車(38)がモータ(36)に連結されていることを特徴とする、先行する請求項の内のいずれか1つに記載の自動式動物訓練システム。

50

**【請求項 3 3】**

前記可動台(41)が相互に配置された複数の構成要素を含むことを特徴とする、先行する請求項の内のいずれか1つに記載の自動式動物訓練システム。

**【請求項 3 4】**

前記可動台(41)が好ましくは「U」字形の形状を有し、該可動台(41)の内側に形成された、内部でホイール(44)を移動させるための溝(43)を備えていることを特徴とする、先行する請求項の内のいずれか1つに記載の自動式動物訓練システム。

**【請求項 3 5】**

複数の支持部(42)がホイール(44)を支持するために地面に固定されていることを特徴とする、先行する請求項の内のいずれか1つに記載の自動式動物訓練システム。

**【請求項 3 6】**

柱(58)が前記可動台(41)上に設置され、複数のピン(60)が該柱(58)の上部に配設され、該ピンの間にホイールが配設されていることを特徴とする、先行する請求項の内のいずれか1つに記載の自動式動物訓練システム。

**【請求項 3 7】**

前記各可動台(41)を互いに連結するためにチェーン(61)が備えられていることを特徴とする、先行する請求項の内のいずれか1つに記載の自動式動物訓練システム。

**【請求項 3 8】**

前記訓練装置が、前記レールへと案内されるホイールに関連してモータ(46)により作動され、該ホイールが前記側部カバーの側面に設置されていることを特徴とする、先行する請求項の内のいずれか1つに記載の自動式動物訓練システム。

**【請求項 3 9】**

前記装置を单一の訓練装置によりけん引する場合、モータ(46)がけん引ホイール(45)に備えられ、けん引されるホイールの間に堅固な連結手段が設置されることを特徴とする、請求項39に記載の自動式動物訓練システム。

**【請求項 4 0】**

前記訓練装置が該訓練装置の上部へと案内されるホイールに関連してモータ(46)により作動されることを特徴とする、先行する請求項の内のいずれか1つに記載の自動式動物訓練システム。

**【請求項 4 1】**

前記訓練装置を单一の装置によりけん引する場合、モータ(46)がけん引ホイール(45)に備えられ、追隨されるホイールの間に堅固な連結手段が設置されていることを特徴とする、請求項41に記載の自動式動物訓練システム。

**【請求項 4 2】**

前記訓練装置内に動物を導き入れるため、前記移動装置(66)が前部に蓋部(78)を備えており、該蓋部(78)には前記移動装置(66)の外に動物の頭部を出させるための開口部(80)が備えられていることを特徴とする、請求項1に記載の自動式動物訓練システム。

**【請求項 4 3】**

前記移動装置(66)に対して少なくとも1つの体温計(76)が動物の上に備えられ、少なくとも1つの呼吸計(75)が動物の鼻部に設置され、少なくとも1つの針手段(71)が血液サンプルを取るために備えられ、少なくとも1つの容器(72)が動物から取られた血液サンプルを蓄積するために設けられていることを特徴とする、請求項1及び42の内のいずれか1つに記載の自動式動物訓練システム。

**【請求項 4 4】**

前記後部カバー及び側部カバーの複数の位置に複数のカメラが備えられていることを特徴とする、請求項1、42乃至43の内のいずれか1つに記載の自動式動物訓練装置。

**【請求項 4 5】**

請求項1、42乃至44の内のいずれか1つに従った動物の訓練成果を測定するための方法であって、

10

30

40

50

EKGを測定することと、

血液サンプルを取り、該血液サンプル中の血液細胞のレベル（赤血球）、血中の水分率（脱水）、乳酸、酵素レベル、白血球レベルを特定することと、

動物の鼻、気管支及び腹部の状態を内視鏡検査により監視することと、

動物の呼吸数、CO<sub>2</sub>値、体温及び泌尿器の状態を監視することと、

X線透視分析を行うことと、

動物の筋肉緊張度を特定することを含み、

これらのパラメータが前記移動装置（63）に設けられたコンピュータ（68）に保存される方法。

#### 【請求項46】

前記コンピュータが前記移動装置（68）以外の領域に設置されていることを特徴とする、請求項45に記載の自動式動物訓練装置。10

#### 【請求項47】

複数の側部摺動手段（87、89）が、前記凸状構造物（7）と作動手段（84、85、86）との間に設けられ、好ましくは前記連結手段（1、2、3）を伸張及び弛緩させるため、前記側部摺動手段（87、89）上にモータが設置されていることを特徴とする、先行する請求項の内のいずれか1つに記載の自動式動物訓練システム。

#### 【請求項48】

前記側部摺動手段（87、89）上に設置された前記作動手段（84、85、86）の移動度を制御するために、電子制御装置（91）が備えられていることを特徴とする、先行する請求項の内のいずれか1つに記載の自動式動物訓練システム。20

#### 【請求項49】

前記連結手段（1、2、3）が伸張及び弛緩させられるよう前記作動手段（84、85、86）を移動させるため、動物の訓練距離のデータが前記電子制御装置（91）内にコード化されることを特徴とする、先行する請求項の内のいずれか1つに記載の自動式動物訓練システム。

#### 【請求項50】

前記側部摺動手段（87、89）の間にある中央摺動手段（88）に固定された鞍支持部（92）が備えられ、上方球状結合部（93）が該鞍支持部（92）内に配設され、固定円筒部（95）が該上方球状結合部（93）に結合され、該固定円筒部（95）内において移動可能な可動円筒部（96）が備えられていることを特徴とする、先行する請求項の内のいずれか1つに記載の自動式動物訓練システム。30

#### 【請求項51】

少なくとも1つのばね要素（100）が、前記固定円筒部（95）の中心線に沿って該固定円筒部内に配設され、可動円筒部（96）と鞍（16）との間に下方球状結合部（94）が備えられていることを特徴とする、先行する請求項の内のいずれか1つに記載の自動式動物訓練システム。

#### 【請求項52】

前記上方球状結合部（93）の運動を制限するために、U字形を有する障害部（99）が前記鞍支持部（92）内に配設されていることを特徴とする、先行する請求項の内のいずれか1つに記載の自動式動物訓練システム。40

#### 【請求項53】

前記側部カバー（15）を3つの垂直な空間方向に移動させるために、軸方向作動手段（101）、垂直方向作動手段（102）、水平方向作動手段が備えられていることを特徴とする、先行する請求項の内のいずれか1つに記載の自動式動物訓練システム。

#### 【請求項54】

前記作動手段が好ましくは油圧式のシリンダ-ピストン機構であることを特徴とする、請求項56に記載の自動式動物訓練システム。

#### 【請求項55】

前記側部カバー（15）が、少なくとも1つの外側カバー（104）と、該外側カバー（50

104) 内を貫通できる内側カバー(105)と、該外側及び内側カバー(104、105)の間に設置されたばね要素(109)とを備えていることを特徴とする、先行する請求項の内のいずれか1つに記載の自動式動物訓練システム。

【請求項56】

ハウジング(107)が前記外側カバー(104)に設けられ、スリップウェイ(108)が前記内側カバー(105)に設けられており、該スリップウェイ(108)はハウジング(107)内に出入りすることが可能であることを特徴とする、先行する請求項の内のいずれか1つに記載の自動式動物訓練システム。

【請求項57】

前記ばね要素(109)が一端において前記外側カバー(104)に固定された外側脚部(111)に連結され、他端において内側脚部(112)に連結され、該外側及び内側脚部(111、112)の間に中央ばね(90)が配置されていることを特徴とする、先行する請求項の内のいずれか1つに記載の自動式動物訓練システム。

【請求項58】

前記側部カバー(15)及び後部カバー(45)を備えた前記動物訓練装置が、自家動力モータ(121)と、ステアリングホイール(119)及びステアリング軸と、前記ステアリング軸に取り付けられたバルブ(118)とを備えた後部ユニット(124)と、中間部(123)を介して一体化され、後部ユニット(124)を支持するために後輪(122)が備えられ、自家動力モータ(121)から供給される流体により作動される前輪(113)が備えられ、該前輪(113)に関連付けられた機械要素が備えられ、それによって一体化された動物訓練装置を規定していることを特徴とする、請求項1に記載の自動式動物訓練システム。

【請求項59】

前記自家動力モータ(121)から前記バルブ(118)へと流体を運搬し、更に前記ステアリングホイール(119)により作動される該バルブ(118)から一次流体ライン(117)あるいは二次流体ライン(125)へと流体を運搬するためにパイプが備えられていることを特徴とする、請求項1及び58の内のいずれか1つに記載の自動式動物訓練システム。

【請求項60】

前記一次流体ライン(117)あるいは前記二次流体ライン(125)から流体が運搬される複数のチャンバを含むピストン(116)が備えられ、該ピストン(116)がピストン作動軸(126)に対して設置されていることを特徴とする、請求項1、58乃至59の内のいずれか1つに記載の自動式動物訓練システム。

【請求項61】

前記ピストン作動軸(126)に対して設置された前記ピストン(116)に連結された、複数の上部コネクティングロッド(127)が備えられていることを特徴とする、請求項1、58乃至60の内のいずれか1つに記載の自動式動物訓練システム。

【請求項62】

前記コネクティングロッド(127)に固定された複数の回転軸(114)が備えられ、該回転軸(114)が、垂直方向に沿って延出していることを特徴とする、請求項1、58乃至61の内のいずれか1つに記載の自動式動物訓練システム。

【請求項63】

前記コネクティングロッド(127)及び前記回転軸(114)に連結された少なくとも1つのビーム(128)が備えられ、該ビーム(128)が好ましくは前記ピストン作動軸(126)と平行であることを特徴とする、請求項1、58乃至62の内のいずれか1つに記載の自動式動物訓練システム。

【請求項64】

前記回転軸(114)の下部に連結された複数の下部コネクティングロッド(132)が備えられていることを特徴とする、請求項1、58乃至63の内のいずれか1つに記載の自動式動物訓練システム。

10

20

30

40

50

**【請求項 6 5】**

一端が前記下部コネクティングロッド(132)に連結され、他端が前輪(113)に連結された、複数の方向アーム(115)が備えられていることを特徴とする、請求項1、58乃至64の内のいずれか1つに記載の自動式動物訓練システム。

**【請求項 6 6】**

前記一次流体ライン(117)及び前記二次流体ライン(125)が、前記側部カバー(15)内に配設されていることを特徴とする、請求項1、58乃至65の内のいずれか1つに記載の自動式動物訓練システム。

**【請求項 6 7】**

好ましくは前記後部ユニット(124)の後部に鋤手段(136)が備えられ、該鋤手段(136)は鋤ピストン(137)によって上下方向に移動させることができることを特徴とする、請求項1、58乃至66の内のいずれか1つに記載の自動式動物訓練システム。10

**【請求項 6 8】**

前記訓練装置の内部に動物が入り込むのを防ぐため、前記側部カバー(15)に障害部(135)が備えられていることを特徴とする、請求項1、58乃至67の内のいずれか1つに記載の自動式動物訓練システム。

**【請求項 6 9】**

前記障害部(135)が、好ましくは流体ピストン機構を含む支持部品によって前記側部カバー(15)に設置されていることを特徴とする、請求項1、58乃至68の内のいずれか1つに記載の自動式動物訓練システム。20

**【請求項 7 0】**

前部あるいは後部に設置されたトラクターによって駆動される馬訓練装置であって、側部及び後部(カバー)が柔軟な材料によって覆われ、少なくとも1つの凸状構造物(7)が該訓練装置の上部を囲っており、該凸状構造物の脚部は該訓練装置の側部上に設置されている馬訓練装置を含む自動式動物訓練システムにおいて、前記訓練装置の後部にある前記トラクターに設置されたステアリングホイール(119)により制御されるバルブ(118)が備えられ、該バルブ(118)は好ましくは流体が中を通って流れる4つの開口部を有しており、流体の流れにより方向付けられるピストン(116)が備えられ、該ピストン(116)は方向付けビーム(140)に連結されたピストンアーム(138)を含んでおり、該方向付けビーム(140)に左右対称に連結された湾曲バー(149)と、一端が該湾曲バー(149)に連結され他端がコネクティングロッド(151)に連結された直線バー(150)とが備えられ、該コネクティングロッド(151)に連結された垂直ビーム(152)が備えられ、一端が該垂直ビーム(152)に連結され他端が前輪(113)に連結されている方向アーム(115)が備えられていることを特徴とする、自動式動物訓練システム。30

**【請求項 7 1】**

流体貯蔵部と前記バルブ(118)を関連付ける流体供給ライン(143)と、該流体貯蔵部と該バルブ(118)を関連付ける流体排出ライン(144)と、該バルブ(118)から前記ピストン(116)へと流体を方向付ける右の流体ライン(141)及び左の流体ライン(142)とが備えられていることを特徴とする、請求項70に記載の自動式動物訓練システム。40

**【請求項 7 2】**

前記方向付けビーム(140)がT字形の形状を有し、前記ピストンアーム(138)がT字形の形状を有する方向付けビーム(140)の垂直部分に連結されていることを特徴とする、請求項70乃至71の内のいずれか1つに記載の自動式動物訓練システム。

**【請求項 7 3】**

前記方向付けビーム(140)を支持するための外側ハウジング(146)が備えられ、前記T字形の形状を有する方向付けビーム(140)の垂直部分が外側ハウジング(146)の移動開口部(147)内において移動可能であることを特徴とする、請求項70乃50

至 72 の内のいずれか 1 つに記載の自動式動物訓練システム。

【請求項 7 4】

前記後部カバー内に前記方向付けビーム (140) が配設され、前記側部カバー内に前記湾曲バー (149) 及び直線バー (150) が配設されていることを特徴とする、請求項 70 乃至 74 に記載の自動式動物訓練システム。

【請求項 7 5】

前記ピストン (116) 及び前記方向付けビーム (140) を覆うために上方及び下方に移動可能な保護蓋 (153) が備えられていることを特徴とする、請求項 70 乃至 74 の内のいずれか 1 つに記載の自動式動物訓練システム。

【請求項 7 6】

少なくとも 1 つのねじの切ってある作動軸 (156) および少なくとも 1 つの支持軸 (157) が、上部軸受け (160) 及び下部軸受け (161) を介して前記凸状構造物の脚部 (155) に沿って設置されていることを特徴とする、先行する請求項の内のいずれか 1 つに記載の自動式動物訓練システム。

【請求項 7 7】

内表面にねじが切ってあり、前記作動軸 (156) の軸を介して移動可能な作動リング (158) と、該作動リングに連結され、前記支持軸 (157) の軸を介して移動可能な支持リング (159) とが備えられていることを特徴とする、先行する請求項の内のいずれか 1 つに記載の自動式動物訓練システム。

【請求項 7 8】

前記作動軸 (156) を回転させるために、好ましくは該作動軸の下部にモータ (168) が備えられていることを特徴とする、先行する請求項の内のいずれか 1 つに記載の自動式動物訓練システム。

【請求項 7 9】

作動リングアーム (165) 及びホイールアーム (164) を介して前記作動リング (158) に連結されたホイール (163) が備えられていることを特徴とする、先行する請求項の内のいずれか 1 つに記載の自動式動物訓練システム。

【請求項 8 0】

偏心軸連結を備えており、前記ホイール (163) がその上を移動可能である従動部 (162) が備えられていることを特徴とする、先行する請求項の内のいずれか 1 つに記載の自動式動物訓練システム。

【請求項 8 1】

一端がホイール (163) の中心部に固定されており、他端は支持リング (159) に連結された固定アーム (179) に固定された支持アーム (167) に連結されている、支持リングアーム (166) が備えられていることを特徴とする、先行する請求項の内のいずれか 1 つに記載の自動式動物訓練システム。

【請求項 8 2】

前記支持アーム (167) に連結されたカバー手段 (178) が備えられていることを特徴とする、先行する請求項の内のいずれか 1 つに記載の自動式動物訓練システム。

【請求項 8 3】

前記訓練装置内の動物の前部及び後部を覆うために、前記カバー手段 (178) を支持し作動させる機械要素が凸状構造物の両脚部 (155) に配設されていることを特徴とする、先行する請求項の内のいずれか 1 つに記載の自動式動物訓練システム。

【請求項 8 4】

前記カバー手段 (178) 内にエアバッグが備えられていることを特徴とする、先行する請求項の内のいずれか 1 つに記載の自動式動物訓練システム。

【請求項 8 5】

前記凸状構造物の脚部 (155) に結合された水平スレッジ (170) が側部カバー (15) 内に配設されていることを特徴とする、先行する請求項の内のいずれか 1 つに記載の自動式動物訓練システム。

10

20

30

40

50

**【請求項 8 6】**

一端が前記水平スレッジ(170)に連結され、他端がスレッジモータ(172)に連結されたスレッジばね(178)が備えられていることを特徴とする、先行する請求項の内のいずれか1つに記載の自動式動物訓練システム。

**【請求項 8 7】**

前記側部カバー内において前記凸状構造物の脚部(155)を移動させるために、該側部カバーに移動開口部(173)が形成されていることを特徴とする、先行する請求項の内のいずれか1つに記載の自動式動物訓練システム。

**【請求項 8 8】**

前記側部カバー(15)の左右対称の側面にハウジング(45)が備えられ、好ましくは電磁石である磁石(175)が該ハウジング内に配設されていることを特徴とする、先行する請求項の内のいずれか1つに記載の自動式動物訓練システム。 10

**【請求項 8 9】**

前記ハウジング(45)内において移動可能なロッド(177)及び該ロッドに連結されかつ前記鞍(16)に連結されたリング(176)が備えられていることを特徴とする、先行する請求項の内のいずれか1つに記載の自動式動物訓練システム。

**【請求項 9 0】**

前記リング(176)が電磁石(175)により供給される磁力によって移動可能であることを特徴とする、先行する請求項の内のいずれか1つに記載の自動式動物訓練システム。 20

**【発明の詳細な説明】****【技術分野】****【0001】**

本発明は、世界中でレースに出場する、具体的には馬、ラクダあるいは同種の動物の身体能力を向上させ、シミュレーション手段の役割を果たす自動式動物訓練システムに関する。 30

**【0002】****技術の状況**

本特許出願は、出願人が本出願と同一人である先行する特許出願WO 01/97606の補足的部分と看做すことができる。従って、以下の特徴は主にこのWO 01/97606の出願に関するものである。 30

**【0003】**

競走馬、ラクダ及び同種の動物の能力に現役期間にわたって影響を与える特徴を考慮すると、血統、栄養、世話、訓練の要素が他の要素よりも重要であることが科学的に認められる。動物の血統は、本質的に生まれつき動物に与えられるという際立った特徴がある。

**【0004】**

血統の特徴とは異なり、他の前記の要素は、種々の方法、プログラム及び装置により開発することができ、動物への専門的な取り組み方を可能にする。本願は身体能力を向上させる訓練手法及び実際のレース状態に関する動物の自動訓練プログラムによるシミュレーション手段に基づいており、その他の要素は本出願の範囲からは除外されている。 40

**【0005】**

特にレースに出場する動物の完全自動式訓練の概念を開示している特許出願WO 01/97606は、本願と同一の出願人により出願されている。先の出願は、側部及び後部が柔軟性材料に囲まれ、前部はロック機構により覆われ、更にトラクターが訓練装置の前部あるいは後部に設けられている訓練装置を開示している。

**【0006】**

この先の出願においては、ホイールがレール内に配設され、装置がそれに従って移動するように装置の側部に設けられたホイールによって訓練装置が案内されること、もしくは装置の上部に位置するラインに取り付けられた何らかの手段によって装置が案内されることが記載されている。 50

## 【0007】

これらの特徴に加えて、先の出願は、訓練装置の配置形態を開示している。すなわち、これらの装置はレースコースの周囲に個別に使用することもでき、また相互に連続して多数使用することもできる。

## 【0008】

先の出願は、完全自動式動物訓練システムに関する独自の手法であり、提示している特徴に伴う多くの利点をもたらすものである。明らかに周知であるように、現在の動物訓練法は人間の介入に基づくものであり、言い換えれば、動物訓練プログラムは人的制御法に関わるものである。この人的制御型の訓練手法は、訓練過程中に動物に身体的障害を生じさせている。馬に障害を生じさせる年間率は非常に高く、競走馬になるはずの子馬の約90%が、その子馬の競技生命を初期に終える結果となっている。

## 【0009】

競走動物の障害率を非常に高くする原因は、主にトレーナーと動物との間の調和が生理学的に欠如していることである。訓練中に、動物はトレーナーが要求するように行動することを強いられ、こうした調和の欠如それ自体が動物に身体的障害を生じさせるのである。

## 【0010】

更に、特にアラブ諸国で見かける長距離レースに参加する動物の訓練に対する人的介入を考慮すると、多くの短所に直面する。長距離従って長時間のレースに関しては、動物の上の乗り手の偏った位置が訓練あるいはレース中に動物の安定性を失わせるため、動物の身体的障害の問題が生じるのは確かな実情である。

## 【0011】

最新技術から他の訓練設備も知られているが、具体的に米国特許No. 4,226,508及び米国特許No. 4,619,222は、いずれも、本願が提案しているような、レース状態に関する具体的なシミュレーションを容易に行える完全自動式訓練システムを提案してはいない。

## 【0012】

例えば、米国特許No. 4,266,508の出願は、動物が中に入れられる枠組みを開示している。この枠組みは、トラクター手段（自家動力の車両）によってその枠組みの前部からのみ引っ張られ、ホイールは枠組みの後部に設けられている。

## 【0013】

米国特許No. 4,266,508の出願は、動物包囲訓練装置の役割を果たす最初の提案であり、かなりの利点を有している。しかしながら、枠組みと一体化していない車両によって前部のみから枠組みを引っ張ることは、相当な不都合も提起するのである。最も不適当な効果は、車両を枠組みの前部に置くことであると言える。というのは、動物の走る方向の正面にそうした車両があることにより、動物が脅かされ易いからである。このため、動物の訓練の実施が不十分になるであろう。更に、トラクター手段（車両）が枠組みに直接連結されていないので、言い換えればホイールが補助車軸によって枠組みに連結されているので、不正確な方向制御機構のために枠組みの方向を変えるのが遅れてしまう。こうした方向変更の遅れによって、やはり動物の訓練の実施が不十分になる。

## 【0014】

こうしたトラクター手段を配置することが一体型訓練装置を達成することにはなり得ないため、本願及び先の出願（PCT/TR00/00048）の発明者でさえ、その欠陥、つまり訓練装置をトラクター手段あるいは自動車、ジープ等のような車両によって引っ張ることは承知している。

## 【0015】

米国特許No. 4,619,222に関して言えば、この出願は一端が動物の頭部に連結され、他端がホイールを介して案内手段に連結されている移動手段を開示している。米国特許No. 4,619,222から分るように、訓練の対象となる動物を包囲する拘束手段もトラクター手段も、この出願においては用いられていない。言い換えれば、動物が苛立っている場合、拘束手段がないために動物が自らを傷つけ得ることは明らかである。

10

20

30

40

50

## 【 0 0 1 6 】

他の動物訓練設備は、いわゆる調教場、競走帯あるいはトラックと呼ばれる設備である。これらの設備は、動物特に馬を静めるために実際に利用され、理論的な形態は備えているが、これらの設備における具体的なシミュレータが不足しているため、実際のレース状態は満たしていない。

## 【 0 0 1 7 】

動物の訓練法に加えて、先の出願は、訓練されている動物の生理学的特徴をリアルタイムで判定する監視手段を提案している。そして監視手段から取得されたデータは訓練装置に接続された装置内で判定される。

## 【 0 0 1 8 】

提案された技術的特徴によって、先の出願は動物訓練過程における人的介入を最小限にすることを目的とし、提案された自動化実施例によってこの目的を達成している。

しかし、出願人は先の出願において提案した特徴に多少欠点があることを承知しており、従って、そうした欠点を解消するために本願が作成されたのである。

## 【 0 0 1 9 】

例えば、先の出願においては、訓練装置の前部に設置されたロック機構が、動物を装置内に拘束する役目を果たすが、同時にロック機構が馬の視野角の外側にきてしまう。この欠点により、訓練中に馬が同時に頭部を上方に上げたり下方に下げたりするため、動物の能力を低減させてしまうのである。

## 【 0 0 2 0 】

訓練中に経験する他の欠点は、訓練装置の構造的欠陥と言われる。訓練中、馬が神経質になって装置の側部を蹴ったり、馬の脚が装置の外側に出てしまったりすることがある。その結果、馬が脚を傷めてしまうこともある。

## 【 0 0 2 1 】

先の出願の訓練装置における別の欠点は、レース状態に関するシミュレーション手段がないことである。すなわち、その欠点とは、実際の場合に受ける騎手あるいは調教師の質量が掛からないことである。

## 【 0 0 2 2 】

先の出願における他の欠点は、訓練中の馬の固定手段に関するものである。

原則的に、外的影響が発生した場合に装置内の馬に障害を与えることは防げないのであろう。例えば、訓練中によろめいたり転倒したりした場合に動物を固定する機械要素がない。

## 【 0 0 2 3 】

先の出願において、ホイールによって側面から装置を「案内すること」及びレースコース全体にわたって上部から装置を「案内すること」から、装置の作動手段が制限されることが分るであろう。訓練装置を単独あるいは多数使用する場合、何らかの別の作動手段が厳密に求められることは明らかである。

## 【 0 0 2 4 】

先の出願に関する他の重大な欠点は、訓練前の設備がないことである。たいていの場合、拘束手段に覆われた装置を利用することによる自動式訓練プログラムの対象となる動物は、訓練プログラムに多少なりとも抵抗するので、これは実に問題である。

## 【 0 0 2 5 】

更に、先行出願の内のいずれにも、後を走る動物のために走行路を平坦にする実施例は開示されていない。レースコースの地面は一般に砂で覆われているので、この点を考慮する必要がある。

## 【 0 0 2 6 】

先の出願において、完全自動式動物訓練設備を実現するための多くの自動化実施例が開示されている。しかし、リアルタイムのレースにおいて、動物は人によって操られるのであるから、先の出願にはシミュレーション手段が欠けている。訓練プログラムとリアルタイムのレース状態との間で円滑な移行を行うために、自動式訓練設備におけるシミュレーション手段を発展させなければならない。具体的に言うと、先の出願において、動物に対す

10

20

30

40

50

る乗り手の命令が存在しないことは、訓練プログラムの間にリアルタイムのレース状態を反映していないことになる。

【0027】

リアルタイムのレース状態においては、動物によってレースで勝つよう、その動物を完全に制御することを可能にするため、乗り手によってはみ及び頭勒が同時に操作される。動物を制御する能力は、最高の結果をもたらす決定要因の1つなのである。

【0028】

レース中に制御すべき他の主要点は鞍であり、レース中に乗り手が動物の上に座っていられないことは、動物を不安にさせ、レースに勝つ妨げとなるであろう。

先の出願に開示されていなかった更に別の欠点は、側部のカバーを移動させることができないことがある。この欠点のため、訓練装置内で動物の位置を動かすことができず、その結果、動物はリアルタイムで適応する能力がなくなってしまう。

【発明の開示】

【0029】

本発明の目的は、自動式システムにより訓練される競走馬あるいは同種の動物の適応のため、訓練前設備を提供することである。

本願の他の目的は、自動式訓練装置を移動させるための別の手段を提供することである。

【0030】

本願の更なる目的は、訓練中における競走馬あるいは同種の動物の訓練の安定性を提供すること、及びリアルタイムのレース状態に関するシミュレーション手段を提供することである。

【0031】

本願の別の目的は、生体力学的及び生理学的特性のリアルタイム判定による動物の能力の監視を可能にすることである。

本願の更に別の目的は、動物のレース状態への完全な適応を可能にすることである。

【0032】

本願の他の目的は、具体的には動物を囲む覆いとトラクター手段が一体となった、一体型の動物訓練装置を提供することである。

この出願の範囲における技術的特徴は次の通りである。動物用の後の自動式訓練装置のための訓練前装置、自動式訓練装置における発展した機械要素、自動式訓練装置を作動させるための別の実施例、及び一体型の自動式訓練装置、すなわち動物を囲む覆いと自家動力モータ及び装置方向制御手段を備えた制御装置との一体化である。

【0033】

前記訓練前装置を構成する要素は、レース用トラックの周囲に互いに予め定められた間隔を置いて配置された、地面に固定されている凸状構造物と、レース用トラックの周囲のレール及びレール内に配設されたホイールから成る静的構造物と、訓練前プログラムの対象となる動物のそばを移動する動的構造物とを含んでいる。更に、主要な自動式訓練プログラムへの動物の適応度を高めるため、動物は、動物の体の胸部に設置された連結手段により凸状構造物の最上部に設けられたレールと相互に作用する。

【0034】

訓練前プログラムの対象となる動物は、取り付け手段によって、体の3箇所の異なる場所から前記の静的構造物に連結されていることが好ましい。これらの取り付け手段は、端部に静的構造物と接触するホイールを有している。

【0035】

訓練前のプロセスにおいて、動物は、側部及び後部が囲まれている、訓練プログラムにおいて使用される装置と同様な装置内に拘束される。訓練前用に使用されるこの装置は、前記の静的構造物内において移動可能である。

【0036】

訓練前プロセスの対象となる動物は、動物の口部にあるはみ、動物の頭部にある頭勒、及び動物の上部にある鞍から、ベルト、紐等によって静的構造物に固定される。こうした訓

10

20

30

40

50

練前設備を用いることにより、動物は自動式訓練プロセスに完全に適応させられる。

【0037】

先行する出願における訓練装置に関連して、本願においては、訓練装置内の動物の位置を安定化して安全条件を増加させるために、幾つかの処置が為されている。動物は、好ましくは体の4つの異なる場所からベルト、紐等によって装置に連結される。これらの場所とは、動物の口部にあるはみ、頭部にある頭勒、胸部にある胸部バンド及び上部にある鞍である。これらの連結手段は、他方において、可機能性を増すためのばね手段によって訓練装置に連結されている。これにより、訓練装置内の動物は、装置に対して相対移動することができる。更に、動物がよろけたり脚部の接触を断つたりした場合に、装置内の動物を吊り下げるための機構が設けられている。シミュレーションの条件を提供するために、様々な質量の要素を鞍に取り付けることができる、訓練中に騎手に相当する質量が均衡を保つようになっている。

10

【0038】

鞍は、ドラム及びモータ機構によって動物の上部に設置され、その機構の一部として、鞍の垂直位置を調整するためにロック手段が備えられている。

本願の他の特徴は、訓練装置を動かすための別の機械式作動機構である。この作動機構によれば、1つあるいは複数の歯車及びそれらの歯車により訓練用レースコース全体にわたって移動可能な台が備えられている。

20

【0039】

動物のリアルタイムのレース状態への適応を実現するため、訓練装置には幾つかの構成要素が備えられた。前述のはみ、頭勒及び胸部バンド連結手段は、スライディングレール上を移動することができるモータによって制御される。そしてモータは、動物を制御するためにこれらの連結手段が状況に応じて引っ張られたり解放されたりするよう、電子装置により作動される。更に、動物の上に設置される鞍は、3次元空間において回転しかつ平行移動することができる。言い換えれば、鞍は6の自由度を有するのである。

20

【0040】

はみ、頭勒及び胸部バンド連結手段の引っ張り及び解放、すなわち転位が、訓練あるいはレースコースに応じてコード化される電子制御装置によって調整されるため、リアルタイムのレース状態と同様に、動物は訓練コースに関して所定の距離に応じて刺激を受けることになる。

30

【0041】

更に、訓練装置の側部カバーが移動可能であるため、訓練装置内の動物は所定の位置に配置される。

本願及び先行する出願が動物、特に馬の訓練用の完全なシステムを提案しているため、訓練プログラム中の動物の能力をオンライン式に監視するための、好ましくは訓練装置とともに移動する検査室が備えられている。この検査室において、好ましくは以下の能力のパラメータがオンライン式に監視される。

- ・動物の心機能をEKG(心電計)により測定すること。
- ・動物の身体状況を判断するため、及び動物に悪影響を及ぼす潜在的病気を発見するため血液サンプルを採取すること。その結果として、次の項目が血液サンプルから導き出される。すなわち、血球(赤血球)、総タンパク、水分比率(脱水)、乳酸、ヘモグロビン値、酵素値、白血球値等が測定できる。
- ・動物の動作状況を判断するため、鼻の内側、胃等の動物の臓器の状態を、内視鏡手段によって特定すること。
- ・呼気のCO<sub>2</sub>値、単位時間当たりの呼吸数、体温及び泌尿器系のデータ等の他のパラメータを特定すること。
- ・X線透視手段によって動物の骨の動態分析を確定すること。
- ・動物の筋肉の緊張度を測定すること。

40

訓練中、動物の特定の体の部位に設置された電極によってEKG測定が行われ、測定された値は、印刷することもでき、あるいは読み出す場合に備えてコンピュータのデータ保存

50

部に保存することもできる。前記コンピュータは可動式の検査室内に設置してもよいし、可動式の検査室以外の別の場所に設置してもよい。

#### 【0042】

訓練中、血液サンプルを採取して前述のパラメータを分析するために、動物に注射器が設置されている。それによって、種々の血液関連のパラメータが分析され、分析結果のデータは、読み出す場合に備えてコンピュータのデータ保存部に保存することができる。前記コンピュータは、可動式の検査室内に設置してもよいし、可動式の検査室以外の別の場所に設置してもよい。

#### 【0043】

内視鏡設備に関しては、内視鏡関連のパラメータのオンライン式測定が技術的に実現不可能であるため、測定は、可動式の検査室内に設置された内視鏡手段によって訓練の直後に行われる。内視鏡手段の結果データは、読み出す場合に備えてコンピュータのデータ保存部に保存することができる。前記コンピュータは、可動式の検査室内に設置してもよいし、可動式の検査室以外の別の場所に設置してもよい。

10

#### 【0044】

動物の鼻部の正面に設置された検出手段により呼吸循環、CO<sub>2</sub>値が測定され、測定値は監視手段によってオンライン式に制御される。更に、これらの測定の結果データは、読み出す場合に備えてコンピュータのデータ保存部に保存することができる。前記コンピュータは、可動式の検査室内に設置してもよいし、可動式の検査室以外の別の場所に設置してもよい。

20

#### 【0045】

体温の測定は、動物の体の数箇所に設置された体温計により行われる。体温測定の結果データは、読み出す場合に備えてコンピュータのデータ保存部に保存することができる。前記コンピュータは、可動式の検査室内に設置してもよいし、可動式の検査室以外の別の場所に設置してもよい。

#### 【0046】

X線透視測定は、訓練装置の数箇所に設置された各種のカメラにより行われる。X線透視手段の結果データは、読み出す場合に備えてコンピュータのデータ保存部に保存することができる。前記コンピュータは、可動式の検査室内に設置してもよいし、可動式の検査室以外の別の場所に設置してもよい。

30

#### 【0047】

前述のパラメータに加えて、訓練中に、タコメータあるいは同様な手段によって動物のスピードを測定することができる。スピード測定の結果データは、読み出す場合に備えてコンピュータのデータ保存部に保存することができる。前記コンピュータは、可動式の検査室内に設置してもよいし、可動式の検査室以外の別の場所に設置してもよい。

#### 【0048】

動物を囲う側部カバー及び後部カバーを備え、自家動力のモータ及び装置の方向制御手段を備えた制御装置を有する一体型動物訓練装置に対して、側部カバーの下に車輪が設置されている。更に、側部カバーと一体化された制御装置は、他の車輪群により支えられている。

40

#### 【0049】

一体型動物訓練装置は、側部カバーの下に設置された車輪によって方向付けられる。これらの車輪は、更なる伝達手段に連結された伝達軸に連結されている。これらの伝達手段は、一体型動物訓練装置の後部にある制御装置内に設置された自家動力のモータにより供給される流体によって作動される。

#### 【0050】

訓練装置内にいる動物の位置を固定するために、拘束手段が、その両端において好ましくは訓練装置の側部カバーに取り付けられている。

本発明の範囲内で別の一体型動物訓練装置が提案されている。この別の構造において、前輪を方向付ける機構は、凸状構造物に沿ってではなく、側部カバーに沿って機械要素を組

50

み立てることに基づいている。更に、動物を装置内の所望の位置に保持することができるようとするため、エアバッグを含むカバー手段が訓練装置内に設置されている。

#### 【0051】

他の実施例は、動物を訓練装置に連結させる連結手段について言及している。この実施例においては、完全に機械的な連結手段の代わりに磁力式の連結部が提案されている。磁石、好ましくは電磁石が側部カバー内に配設され、一端が鞍に連結され他端が電磁石と関係付けられたリング手段が、電磁石により発生する磁力によって制御される。

#### 【0052】

更に、動物訓練装置のための別の提案は、移動可能な凸状構造物について言及している。具体的には、側部カバーと結合された脚部が、側部カバーの内部に形成されたハウジング内で移動可能になっている。

#### 【0053】

添付の図面に関連して以下の説明を読むことにより、本発明の目的及び利点が明らかになるであろう。

#### 発明の詳細な説明

図1は本発明に関する動物訓練装置の斜視図である。この図によれば、本装置内にいる動物は、好ましくは体の別々の4箇所から装置に据え付けられている。この実施例では、一端が動物の口部にあるはみ(25)に連結され、他端が側部カバー(15)に連結されたはみ連結手段(1)と、一端が動物の頭部にある頭勒(24)に連結され、他端が側部カバー(15)に連結された頭勒連結手段(2)と、一端が動物の胸部にある胸部バンド(23)に連結され、他端が側部カバー(15)に連結された胸部バンド連結手段(3)とが見える。上記の連結手段は、側部カバー(15)に対して左右対称に配置されている。他の連結手段は、一端が鞍(16)に連結され、他端が凸状構造物(7)に連結された鞍連結手段(4)である。この最後の連結手段は、動物がよろめいたり転倒したりした場合に、動物が容易に訓練装置内に吊り下げられるようにしている。

#### 【0054】

訓練装置の上方部及びその脚部を囲う凸状構造物(7)は、訓練装置の側部に位置し、最上部にドラム(5)及びそのドラム(5)を駆動するモータ(6)を備えている。動物がよろめいたり転倒したりした場合に、重力により動物の質量が生じた結果として発生する力が、ドラム(5)に配設されたセンサによって判断され、それに従ってドラムがモータ(6)により駆動され、鞍(16)上のリング(22)を介して鞍に取り付けられた鞍連結手段(4)によって動物が上方に持ち上げられる。

#### 【0055】

モータ(6)及びドラム(5)に関連する別の機能は、一旦動物が訓練装置内に置かれると、このモータ(6)及びドラム(5)によって鞍(16)の垂直移動が調整されることである。この目的を果たすため、鞍(16)はモータ(6)を介してドラム(5)を回転させることにより動かされ、鞍(16)が動物の上に置かれる。鞍(16)の移動度は、ドラム(5)に設けられたロック手段(図示されていない)により決定される。

#### 【0056】

鞍(16)の材料は、シリコン、ゴム、樹脂材料を基にしているのが好ましく、また実際のレース状態に関するシミュレーションの条件を達成するために、10kgから70kgの間の荷重が鞍(16)に取り付けられている。

#### 【0057】

訓練装置に対する動物の相対移動を実現して、動物と訓練装置との間の柔軟な相互作用を可能にするため、好ましくは側部カバー(15)を通過する数本の紐(19)が配設されている。各紐は、その一端がはみ連結手段(1)、頭勒連結手段(2)及び胸部バンド連結手段(3)に連結されている。紐と連結手段との連結点は、側部カバーの連結手段用の開口部であることが望ましい。図1に示されているように、はみ紐(19)ははみ連結手段(1)に取り付けられ、頭勒紐(20)は頭勒連結手段(2)に取り付けられ、胸部バンド紐(21)は胸部バンド連結手段(3)に取り付けられている。これらの紐(19、

20、21)は、固定体に一端が連結されたばねに連結されている。

【0058】

図1から分るように、はみ紐(19)ははみばね(11)に連結され、頭勒紐(20)は頭勒ばね(12)に連結され、胸部バンド紐(21)は胸部バンドばね(13)に連結される。ばね(11、12、13)の弾性係数は互いに異なっていることが好ましい。弾性係数の異なるばねを取り入れる提案は、装置内での相対移動の結果、装置内の動物が自分自身を肉体的に傷つけるのを防ぐためである。この提案によれば、ばねの弾性係数は胸部バンドばね(13) > 頭勒ばね(12) > はみばね(11)のように決めることができる。

【0059】

本発明の範囲において、幾つかの構成要素は、装置内で動物が自分自身を傷つけるのを防ぐように構成されている。動物の後脚に対応する訓練装置の後部は湾曲し、柔軟な材料によって覆われている。湾曲した後部(9)は訓練装置の側部(15)へとつながっている。

【0060】

他の予防措置としての特徴は、部分的に塞がれた形状を有している、側部カバー(15)と凸状構造物(7)との間に設けられた封鎖部(8)である。この封鎖部(8)は、柔軟な材料によって覆われている。

【0061】

特に訓練の開始時及び終了時において装置内での動物の位置変化を防ぐために、訓練装置の後部に移動可能な探知器(10)が配設されている。図1に示すように、移動可能な探知器(10)は、油圧機構により作動する押圧手段(14)によって前方及び後方に駆動される。移動可能な探知器(10)は訓練装置の前部に配設することも可能で(図示されていないが)、これにより装置内の動物を装置内の予め定められた位置に保持することができる。

【0062】

図2Aにおいては、主要な訓練プログラムを開始する前の訓練前設備が示されている。こうした関連設備を用いる目的は、動物を主要な訓練プログラムに適応させることである。訓練前設備は、静的及び動的要素を含んでいる。静的要素は、内部でホイール及びブーリーが移動可能である、コース全体に配置された上部ガイド(26)と、コース全体にわたって他の静的要素を覆う、所定の間隔で配置されたフレーム(29)とを含んでいる。凸状構造を有するフレーム(29)は、湾曲した形状を有するフレーム上部要素(30)とフレーム下部要素(31)とを含んでいる。更に、一端は動物と、他端は側部ガイド(32)と連結された移動可能な連結手段を案内する側部ガイド(32)がある。側部ガイド(32)は、脚部(33)によって地面に固定されている。

【0063】

本発明の範囲における動的要素は、次のように特徴付けられる。動物訓練装置と同様に、一端が動物の口部であるはみ(25)に連結され、他端が側部ガイド(32)上を移動するホイール(35)に連結されたはみ連結手段(1)と、一端が動物の頭部にある頭勒に連結され、他端が側部ガイド(32)上を移動するホイール(35)に連結された頭勒連結手段(2)とである。訓練前講習の対象となる動物は、側方からプレート(34)により囲われている。プレート(34)の移動機構は、上部ガイド(26)内を移動するホイール(27)に連結されたプレート支持部(28)により実施されることが望ましい。これらの技術的特徴に加えて、動物の上に置かれる鞍(16)が、鞍連結手段(4)によってホイール(27)に連結されている。

【0064】

プレート(34)及び鞍(16)が連結されたホイール(27)の移動機構は、ホイールに接続されたモータ(36)により提供される。

訓練前講習のために用いられる動的要素は、単一で構成することも、複数で構成して動物の複数での訓練を実現することもできる。複数の訓練前設備の場合、ホイール(27)の

移動は各ホイール(27)につき1つのモータ(36)を使用することにより行うことができるが、代わりに全ホイールに対して1つのけん引モータを用いることもできる。この方法の場合、1つのけん引モータにより引っ張るため、各対のプレートの間に固定手段を用いることができる。

【0065】

図2Bにおいて、訓練前設備用の機械的連結手段の別の構成が示されている。この別の構成においては、はみ連結手段(1)及び頭勒連結手段(2)がプレート(34)に固定され、プレート支持部(28)はホイール(27)に連結されていない。鞍連結手段(4)のみが鞍(16)に設置されている。更に、システムを作動させるモータ(36)が上部ガイド(26)部に設置されていない。図2Bに見られるとおり、モータ(36)はプレート(34)の側面部に設けられている。モータ(36)は、側部ガイド(32)内に配設されたホイールによってプレート(34)とともに移動する。

【0066】

モータ(36)が接続されていない他方のプレート(34)は、ホイールを介して他方の側部ガイド(32)に連結されている。

先行する発明に関連して、本発明により2つの実施例が提案されている。図7において、訓練装置の後部(カバー)(45)は、訓練装置の側部カバーに設けられた連結部(47)を中心として後部カバー(45)を回転させることにより開かれる。従って、訓練装置は、固定された前部カバー(46)及び開放可能な後部カバー(45)を備えている。後部カバー(45)の開放動作は、作動装置及び油圧式シリンダ-ピストン機構(48)により行われる。シリンダ-ピストン機構(48)の一端は前部カバー(46)に固定され、他端は開閉可能な後部カバー(45)に固定されている。後部カバー(45)及び前部カバーは、接合面(52)において一体化する。前部カバー(46)には、前部封鎖ハウジング(49)が固定されている。この前部封鎖ハウジング(49)内には、前部封鎖要素(50)が配設されている。これにより、必要な場合に動物の正面に障壁が形成される。図7に示されているように、前部封鎖要素(50)は、油圧式ピストン-シリンダ機構(51)により前部封鎖要素(50)を移動させることによって作動されることが好ましい。

【0067】

図8においては、訓練装置内において動物の位置を決めるためのエアバッグ(53)が示されている。エアバッグ(53)は装置の側部カバー内に配設されるのが好ましい。コンプレッサ(55)により空気が圧縮され、接続パイプ(56)内を通される。その後、空気は空気取り入れ口(57)により空気通路内に導入され、エアバッグが外側に向かって膨らむ。その結果、動物は装置内の決まった位置に保持される。

【0068】

図3には、訓練装置を移動させるための別の構成が示されている。

本図によれば、移動機構は可動台(41)と可動台用のモータ(37)により駆動される作動歯車(38)とを備えている。図4Aに示されているように、可動台(41)は、好ましくはU字形の形状を有しており、下部に可動台歯(40)が形成されている。これらの歯は作動歯(39)と接触しており、その結果、台の移動が行われる。

【0069】

訓練コースは湾曲部を含むため、可動台(41)は、湾曲部が巡ってきたときに回転するための複数の部品を含んでいる。

訓練装置がこの部品に固定されているため、可動台の部品が湾曲部を回るときに装置の回転が実行される。可動台(41)は単一の作動歯車(38)によっても、2つ以上の作動歯車(38)によっても駆動することができる。

【0070】

図4Aにおいては、可動台(41)の詳細図が示されている。可動台(41)の予め定められた軌道を規定するため、可動台はそれに従って案内される必要がある。このため、U字形を有する可動台(41)の内側の側面に溝(43)が形成されている。これらの溝(43)は、可動台(41)が湾曲部を回るときに案内される。

10

20

30

40

50

43) 内には、ホイール(44)のような回転可能手段が配設されている。ホイール(44)は、支持部(42)により地面に固定されている。

【0071】

図4Bでは、訓練装置を相互に繋ぐためのチェーン機構が示されている。このチェーン機構には、可動台(41)の上に位置する柱(58)、柱(58)の上部となるピン(60)及びピン(60)の間に配設されたホイール(59)がある。ホイール(59)は、訓練コース全体にわたって設けられたレール内を移動することができる。チェーン(61)は可動台(41)の間に配置されている。可動台(41)は歯車機構により動かされる。

【0072】

図5では、訓練コース全体にわたる訓練装置用の作動機構が示されている。本図には、接続されたモータ(81)によってレール内を移動可能なホイール(82)が示されている。訓練装置は、各ホイールに接続された複数のモータによって駆動されてもよいし、1つのけん引訓練装置に接続された単一のモータによって駆動されてもよい。後者の場合、他の訓練装置はチェーンのような何らかの剛体の機械要素によって互いに連結される。

【0073】

図6には同様な実施例が示されている。この図において、訓練装置の上部に位置しておりレール内で駆動されるホイール(82)によって、訓練装置が動かされる。各訓練装置は、各ホイールに連結されたモータにより動かしてもよいし、けん引装置のホイールに連結されたモータによって他の訓練装置を動かすために、単一の専用のけん引装置を用いてもよい。後者の場合、他の訓練装置はチェーンのような何らかの剛体の機械要素によって互いに連結される。

【0074】

図9では、閉鎖型訓練装置が示されている。閉鎖型訓練装置は、側部及び上部を閉鎖するように構成されている。図9において、訓練装置の後部には可動式検査室(63)装置が取り付けられている。言い換えれば、訓練装置及び検査室装置(63)が閉鎖型の移動装置(66)から成るのである。蓋部(78)は、移動装置(66)の正面にあり、その側部、後部及び上部は閉じられている。蓋部(78)は、ヒンジ(79)があるため、下方及び上方へ移動することができる。更に、蓋部(78)の正面部に開口部(80)が形成されているため、動物の頭を突き出させることができる。

【0075】

図10に示されているように、訓練装置は、モータ(64)、好ましくは内燃エンジンにより駆動され、車輪(65)で移動する。訓練される動物のEKGを監視するため、幾つかの電極手段(69)が動物の体に設置される。電極手段(69)から得られた信号はEKGケーブル(70)により検査室(63)内のEKG装置(67)に伝達され、その信号を印刷することができる。それに加えて、EKG装置(67)から得られた信号はコンピュータ(68)に伝達され、いつでも取り出せるようにコンピュータ(68)内に保存することができる。コンピュータ(68)は、訓練装置以外のどこかに設置してもよい。

【0076】

訓練中あるいは訓練時間の後に、針手段(71)が動物の体に配置されて血液サンプルを動物から受け取る。受け取った血液サンプルは容器(72)内に蓄積することができる。図9から分るように、受け取られた血液サンプルは、血液テスト分析器(73)に送られ、分析から得られたデータは、いつでも取り出せるようにコンピュータ(68)に保存することができる。

【0077】

訓練時間の直後に動物の腹部、気管支及び雑音の状態を観察するため、可動検査室内には内視鏡検査要素(74)が設置されている。内視鏡検査要素(74)から得られたデータは、いつでも取り出せるようにコンピュータ(68)に保存することができる。

【0078】

訓練中の動物の呼吸状態を観察するために、動物の鼻部の近くに呼吸計(75)が設置される。動物の呼吸から得られるデータは、いつでも取り出せるようにコンピュータ(68)

10

20

30

40

50

)に保存することができる。

【0079】

訓練の対象となる動物は、体の様々な部分に設置された体温計によって、訓練中の体温変化について観察される。体温計から得られたデータは、いつでも取り出せるようにコンピュータ(68)に保存することができる。

【0080】

訓練中の動物の動態分析は、訓練装置の様々な部分に設置されたカメラ(77)のようなX線透視手段により行われる。X線透視手段から得られたデータは、いつでも取り出せるようにコンピュータ(68)に保存することができる。

【0081】

分析結果を保存するための前記のコンピュータ(68)は、訓練装置内に設置してもよいし、または大型コンピュータとして固定的な領域に設置してもよい。

図11は、電子式移動制御連結手段を示している。本図によれば、訓練装置内にいる動物が3つの異なる場所から、すなわちはみ連結手段(1)、頭勒連結手段(2)及び胸部バンド連結手段(3)によって装置に連結されている。その他の連結手段は、動物の胴体の周囲を回っている鞍支持部(17)である。図11に示されているように、鞍(16)は、鞍連結手段(4)によって、2つの凸状構造物(7)の間に構成された中央摺動手段(88)に連結されている。

【0082】

訓練中に動物を制御するモータ(84、85、86)が、凸状構造物(7)の間に備えられた側部摺動手段(87、89)上に、軸方向に沿って設置されている。モータ(84、85、86)の軸方向の移動が連結手段(1、2、3)の伸張、弛緩を可能にし、そのため動物が訓練条件に従って制御される。

【0083】

本発明の最良の態様において、側部摺動手段(87、89)上に設けられたモータ(84、85、86)の移動は、リアルタイムのレース状態を提供する電子制御装置(91)によって実行される。例えば、リアルタイムのレース状態において、最初の1000mでは連結手段(1、2、3)が比較的伸張した状態で保持され、特にフィニッシュに向かう最後の道程では連結手段(1、2、3)が比較的弛緩した状態で保持される。従って、2400mといった実際のレースの道程を考慮して、電子制御装置(91)により作動されるモータ(84、85、86)によって連結手段(1、2、3)を伸張及び弛緩させることで、動物が制御される。モータ(84、85、86)の移動量は、距離データを電子制御装置(91)内にコード化することによって得られる。

【0084】

更に、電子制御装置(91)はプログラム可能な装置であるため、訓練条件は訓練距離に応じて変化させることができる。電子制御装置(91)は訓練装置以外のどこかに設置することもできる。

【0085】

図12Aでは、6の自由度を有する鞍(16)が示されている。この鞍(16)は、鞍連結手段(4)によって中央摺動手段(88)に連結されている。本図によれば、鞍支持部(92)が中央摺動手段(88)と嵌合し、鞍支持部(92)内に、垂直方向において回転可能な上方球状結合部(93)が設けられている。上方球状結合部(93)の底部に、固定円筒部(95)が設置され、固定円筒部(95)内で移動可能な可動円筒部(96)が設けられている。動物から生じた突発的な力を緩衝するために、固定円筒部(95)の中にはね(100)が配設されている。

【0086】

下方球状結合部(94)が、可動円筒部(96)と鞍(16)との結合箇所に設けられており、これによって鞍(16)は3つの直角方向に回転することができる。固定円筒部(95)内には、可動円筒部(96)の緩衝効果を与えるために、何らかの作動流体が溜められている。

## 【0087】

訓練装置内の動物の位置が変化した場合、本図に破線で示された位置に鞍(16)及び円筒部(95、96)が移動させられる。より柔軟な構造のためには、円筒部の数を増やしてもよい。

## 【0088】

図12Bでは、鞍支持部(92)の上面図が示されている。図で分るように、上方球状結合部(93)の移動は障害部(99)によって制限される。障害部(99)は、U字形を有して構成され、開口部(97)を備えていることが好ましい。上方球状結合部(93)はハウジング(98)内で移動することができる。本図において、破線は、図12Aにおける破線の位置を表している。

10

## 【0089】

図13では、訓練装置の側部カバー(15)が示されている。この別の実施例において、側部カバー(15)は数個の作動手段によって移動させられる。側部カバー(15)を軸方向に移動させるには、軸方向の作動手段(101)、幅方向には水平作動手段(103)、そして垂直方向へは垂直作動手段(102)が構成される。これらの作動手段(101、102、103)は、側部カバーに設置されるのが望ましく、手動でも電子的にも制御可能である。図13では、側部カバー(15)の移動度がゼロであり、一旦側部カバー(15)が動かされると、接合面(106)に関して移動が行われる。

## 【0090】

図14は、一方を他方に差し込むことができる一組の側部カバーを示している。この構成は、動物が側部カバー(15)を蹴った場合に備えて柔軟な構造を提供する。本図によれば、外側カバー(104)及び外側カバー(104)内で移動可能な内側カバー(105)が備えられている。内側カバー(105)が外側カバー(104)を貫通できるように、ハウジング(107)が外側カバー(104)に設けられ、スリップウェイ(108)が内側カバー(105)に設けられているため、スリップウェイ(108)をハウジング(107)内に差し込むことができる。

20

## 【0091】

図14に示されているように、外側カバー(104)と内側カバー(105)との間には、ばね要素(109)が設置されている。ばね(109)は外側カバー(104)に取り付けられた外側脚部(111)と、内側カバー(105)に取り付けられた内側脚部(112)とを備えている。これらの脚部(111、112)は軸(110)によって連結され、これらの脚部(111、112)の間に中央ばね(90)が配設されている。

30

## 【0092】

図15は、一体型動物訓練装置の斜視図を示している。本図によれば、後部ユニット(124)が中間部(123)を介してカバー部と一体化されている。後部ユニット(124)には、自家動力モータ(121)が設置されている。自家動力モータ(121)により発生する回転運動は、差動機構によって後輪(122)に伝えられる。

40

## 【0093】

一体型動物訓練装置の誘導は、前輪(113)によって行われる。前輪(113)の方向の変更は、自家動力モータ(121)から供給される流体により行われる。流体は自家動力モータ(121)によって汲み上げられ、パイプ(120)によってステアリングホイール(119)の下部に設置されたバルブ(118)へと運搬される。

## 【0094】

ステアリングホイール(119)が回されると、ステアリングホイール(119)に連結された軸がバルブ経路を経て流体を導き、次いで一次流体ライン(117)あるいは二次流体ライン(125)によって、流体が適切なピストン(116)チャンバまで運ばれる。ピストン(116)は、凸状構造物(7)の実質上の上部において、ピストン作動軸(126)を作動させるため、ピストン作動軸(126)上に設置されることが好ましい。

## 【0095】

図15に示されているように、一次及び二次流体ライン(117、125)は、ピストン

50

(116)のシリンダが配設された2つの別々のチャンバに連結されている。ステアリングホイール(119)を介してバルブ(118)が一旦方向付けられると、ピストン(116)のこれらのチャンバのうちの1つに流体が蓄積され、それによってピストン(116)がピストン作動軸(126)を水平方向に向かって直線的に作動させる。

【0096】

図16に示されているように、ピストン作動軸(126)が動かされると、それに応じて上部コネクティングロッド(127)が作動される。構造的な一体性のため、ピストン作動軸(126)と上部コネクティングロッド(127)との間に作動軸受け(129)が設置されている。動きは、更に、片側が上部コネクティングロッド(127)に連結されている、垂直方向に設置された回転軸(114)に伝えられる。その構造を支持するため、上部コネクティングロッド(127)と回転軸(114)との連結点において、ピストン(116)と平行になるようにビーム(128)が備えられている。回転軸(114)の回転運動は、下部コネクティングロッド軸受け(131)を介して下部コネクティングロッド(132)に伝えられ、その運動は更に、一端が前輪(113)に連結され、他端が下部コネクティングロッド(132)に連結された方向アーム(115)に伝えられる。同様に、構造的な完全性のため、方向アーム(126)と下部コネクティングロッド(132)との間に、方向アーム軸受け(133)が設置されている。方向アーム(126)が前輪(113)の中心から比較的離れて設置されているため、前輪(113)の方向付けが簡単に実現できる。

【0097】

訓練対象の動物を訓練装置に導き入れたり訓練装置から出したりできるので、前輪(113)方向付け機構は、上部、すなわち凸状構造物(7)の側に載置されることが望ましい。

【0098】

図17は、本発明に関連する拘束手段すなわち障壁部の斜視図である。動物が驚いた場合に備え、障壁部(135)は、動物が訓練装置の内部に入るのを防ぐものである。障壁部は、好ましくは油圧式のピストンである支持部品(134)によって側部カバーに固定されている。

【0099】

動物が装置内に導き入れられると、障壁部は動物の後部に接触する。障壁部は、直接動物に接触するため柔軟な材料で作られていることが望ましく、更にその柔軟性を高めるために、ばね手段を取り付けてもよい。

【0100】

一体型動物訓練装置の後部には、訓練装置が地面の上を移動する際に地面をならすために、鋤(136)が設置されている。鋤は、鋤ピストン(137)によって上下させることができる。

【0101】

図18は、別の一体型動物訓練装置の斜視図である。本図によれば、ステアリングホイール(119)が回されると、一端がステアリングホイール(119)に連結され、他端がバルブ(118)に連結されたステアリングビーム(145)が、バルブ(118)内の経路を閉鎖あるいは開放し、その結果、流体が所望の方向に導かれる。バルブは、4つの開口部を備え、内2つが流体をピストン(116)内に供給して最終的に前輪の方向を変化させることが望ましい。第三の開口部は、流体供給ライン(143)によって流体貯蔵部からバルブ(118)に流体を運ぶために設けられており、第四の開口部は、流体排出ライン(144)によって余分な流体を流体貯蔵部に排出させるために設けられている。

【0102】

図18に示されているように、ピストンは、右の流体ライン(141)及び左の流体ライン(142)から流体を供給される。入ってくる流体、すなわち右のラインからであるか左のラインからであるかに応じて、ピストン(116)に連結されたピストンアーム(138)が前方あるいは後方に動かされる。ピストンアーム(138)が方向付けビーム(

10

20

30

40

50

140)にしっかりと取り付けられているため、ピストンアーム(138)が動かされると、それに応じて方向付けビーム(140)が水平方向に動かされる。構造的な完全性のため、方向付けビーム(140)は外側ハウジング(146)によって支持されており、それにより方向付けビーム(140)は外側ハウジング(146)内で移動することができる。方向付けビーム(140)の形状が、水平及び垂直要素から成る、すなわちT字形の形状となっているため、方向付けビーム(140)の水平方向の移動度は、外側ハウジング(146)内に形成された移動開口部(147)を介して移動可能な垂直要素により決定される。

#### 【0103】

ピストン(116)の作動により水平方向に移動可能である方向付けビーム(140)は、中央結合部(148)によって湾曲バー(149)に取り付けられている。湾曲バー(149)は、好ましくは側部カバー(15)内に配設されている。ピストン(116)が方向付けビーム(140)を作動させると、湾曲バー(149)が動かされ、その動きを、直線バー(150)に伝える。それに応じて、直線バー(150)は、その動きを、更に他端が垂直ビーム(152)に連結されているコネクティングロッド(151)に伝える。その結果、一端が垂直ビーム(152)に連結され、他端が前輪(113)に連結されている方向アーム(115)が、その動きを前輪(113)に伝えるのである。

#### 【0104】

ピストン(116)、バルブ(118)、方向付けビーム(140)、外側ハウジング(146)等を含む前記の構成要素は、外的影響を防ぐため保護蓋(153)によって覆われている。

#### 【0105】

図19は、本発明に関連する前部及び後部カバー手段を示している。一旦動物が訓練装置内に置かれると、動物の前部及び後部はカバー手段(178)によって閉じられてしまう。これらのカバー手段(178)を駆動する機構が、本図に示されている。好ましくは、2つの軸(156、157)が、上部軸受け(160)及び下部軸受け(161)を介して凸状構造物の脚部(155)に垂直に固定されている。軸のうちの1つである作動軸(156)はねじの切ってある軸であり、好ましくは底部にあるモータ(168)によって作動される。モータ(168)は、電気式モータであることが望ましいが、自家動力モータから供給されるエネルギーによって駆動されてもよい。

#### 【0106】

作動リング(158)は、作動軸(156)に対して環状に設置されている。作動軸(156)が回転されると、内表面にねじの切ってある作動リング(158)は、上方及び下方に移動される。カバー手段(178)の重力が支持軸(157)によって対処されるよう、作動軸(156)の側に支持軸(157)が設置されている。同様に、作動リング(158)にしっかりと連結された支持リング(159)は、支持軸(157)に対して環状に設置されており、上方及び下方に移動可能である。

#### 【0107】

作動リングアーム(165)は、一端が作動リングに固定され、他端がホイールアーム(164)に固定されている。ホイールアームは、更に他端が偏心軸連結を備えた従動部(162)上で移動するホイール(163)の中心部に固定されている。支持リングアーム(166)は、一端がホイール(163)の中心部に固定され、他端が支持リング(159)に連結された固定アーム(179)に固定された支持アーム(167)に連結されている。

#### 【0108】

カバー手段(178)は以下のように動かされる。

モータ(168)によって作動軸(156)が回転されると、作動リング(158)が垂直方向に移動される。一方、作動リング(158)に関連付けられたホイール(163)は、偏心軸連結を備えた従動部(162)上を移動する。ホイール(163)が偏心軸連結の下方軸上を移動すると、支持リングアーム(166)がシフトし、支持リングアーム

10

20

30

40

50

(166)に連結されたカバー手段(178)が、それに応じてシフトする。作動リング(158)が所定の位置に移動すると、カバー手段(178)は動物の正面を完全に覆うことになる。

【0109】

同様なカバー動作は、作動リング(158)が偏心軸連結の上方軸上を移動する場合にも当てはまる。作動リング(158)が所定の位置に移動すると、カバー手段(178)が完全に持ち上げられ、動物の正面が開放される。

【0110】

本発明の好適な実施例において、前述のカバー手段(178)機構は凸状構造物の他方の脚部の横に組み付けられているので、動物の後部が閉鎖あるいは開放される。

10

動物の位置を柔軟性のある形態によって制御することができるよう、カバー手段(178)には複数のエアバッグが備えられている。これらのエアバッグは、動物の位置を限定するために、望みどおりに膨らますことができる。

【0111】

図20は、本発明に関連して、凸状構造物を側部カバーに対して移動させる機構を示している。図から分るように、凸状構造物の脚部(155)は、移動開口部(173)を介して側部カバー(15)内で移動することができる。凸状構造物の脚部(155)は、側部カバー(15)内に配設された水平スレッジ(170)に連結されている。

【0112】

水平スレッジ(170)は、スレッジモータ(172)によって動かされ、スレッジモータ(172)と水平スレッジ(170)の間にはスレッジばね(178)が備えられている。水平スレッジ(170)がスレッジモータ(172)によって動かされると、水平スレッジ(170)に連結された凸状構造物の脚部(155)がそれに応じて動く。

20

【0113】

図21は、本発明に関連して、側部カバー内に配設された磁石式構造物を示している。電磁石(175)が配設されたハウジング(174)は、両側部カバー(15)の左右対称の内側面に形成されていることが好ましい。ハウジング(174)内において移動可能であり、リング(176)を支持しているロッド(177)がハウジング(174)内に備えられている。このリング(176)は、動物の上に載っている鞍(16)に連結される。電磁石により提供される調整可能な磁力が、ハウジング(174)内で所望の量だけリング(176)を移動させる。

30

【図面の簡単な説明】

【0114】

【図1】本発明に関連する、訓練装置及び地面に垂直な凸状構造物に対する動物連結手段を示す図である。

【図2A】本発明に関連する訓練前設備を示す図である。

【図2B】本発明に関連する、訓練前設備に用いられる別の構造物の主要な構成要素を示す図である。

【図3】本発明に関連する訓練装置の作動機構を示す図である。

40

【図4A】本発明に関連する訓練装置用の可動台の詳細図である。

【図4B】本発明に関連する複数の訓練装置を作動するためのチェーン機構を示す図である。

【図5】本発明に関連する訓練装置の側方からの作動機構を示す図である。

【図6】本発明に関連する訓練装置の上方からの作動機構を示す図である。

【図7】本発明に関連する訓練装置のための可動式カバー及び前部封鎖要素を示す図である。

【図8】本発明に関連する訓練装置内において動物の位置を固定するエアバッグを示す図である。

【図9】本発明に関連する検査ユニットを備えている、閉じられた形状を有する訓練装置の斜視図である。

50

【図10】本発明に関連する検査ユニットを備えている、閉じられた形状を有する訓練装置の、内部の構成要素を示す図である。

【図11】本発明に関連する電子式移動制御連結手段を示す図である。

【図12A】本発明に関連する6の自由度を有する鞍機構を示す図である。

【図12B】本発明に関連する鞍の上面図である。

【図13】本発明に関連する訓練装置の側部カバーを示す図である。

【図14】本発明に関連する、一方が他方の内部に入っている側部カバーを示す図である。

【図15】本発明に関連する一体型動物訓練装置の斜視図である。

【図16】本発明に関連する一体型動物訓練装置の車輪の方向付けを示す図である。

10

【図17】本発明に関連する拘束手段の斜視図である。

【図18】本発明に関連する別の一体型動物訓練装置の斜視図である。

【図19】本発明に関連する前部カバー手段及び後部カバー手段を示す図である。

【図20】本発明に関連する側部カバーに対して凸状構造物を移動させる機構を示す図である。

【図21】本発明に関連する側部カバーに配設された磁力式構造を示す図である。

【構成要素の参照番号】

【0115】

1 はみ連結手段

20

2 頭勒連結手段

3 胸部バンド連結手段

4 鞍連結手段

5 ドラム

6 モータ

7 凸状構造物

8 封鎖部

9 湾曲カバー

10 移動可能な探知器

11 はみばね

30

12 頭勒ばね

13 胸部バンドばね

14 押圧手段

15 側部カバー

16 鞍

17 鞍支持部

18 固定体

19 はみ紐

20 頭勒紐

21 胸部バンド紐

40

22 リング

23 胸部バンド

24 頭勒

25 はみ

26 上部ガイド

27 ホイール

28 プレート支持部

29 フレーム

30 フレーム上部要素

31 フレーム下部要素

32 側部ガイド

50

|     |               |    |
|-----|---------------|----|
| 3 3 | 脚部            |    |
| 3 4 | プレート          |    |
| 3 5 | ホイール          |    |
| 3 6 | モータ           |    |
| 3 7 | モータ           |    |
| 3 8 | 作動歯車          |    |
| 3 9 | 作動歯           |    |
| 4 0 | 可動台歯          |    |
| 4 1 | 可動台           |    |
| 4 2 | 支持部           | 10 |
| 4 3 | 溝             |    |
| 4 4 | ホイール          |    |
| 4 5 | 後部カバー         |    |
| 4 6 | 前部カバー         |    |
| 4 7 | 連結部           |    |
| 4 8 | シリンダ - ピストン機構 |    |
| 4 9 | 前部封鎖ハウジング     |    |
| 5 0 | 前部封鎖要素        |    |
| 5 1 | シリンダ - ピストン機構 |    |
| 5 2 | 接合面           | 20 |
| 5 3 | エアバッグ         |    |
| 5 4 | エアバッグ開口部      |    |
| 5 5 | コンプレッサ        |    |
| 5 6 | 接続パイプ         |    |
| 5 7 | 空気取り入れ口       |    |
| 5 8 | 柱             |    |
| 5 9 | ホイール          |    |
| 6 0 | ピン            |    |
| 6 1 | チェーン          |    |
| 6 2 | レール           | 30 |
| 6 3 | 可動式検査室        |    |
| 6 4 | モータ           |    |
| 6 5 | ホイール          |    |
| 6 6 | 可動ユニット        |    |
| 6 7 | EKG装置         |    |
| 6 8 | コンピュータ        |    |
| 6 9 | 電極            |    |
| 7 0 | EKGケーブル       |    |
| 7 1 | 針             |    |
| 7 2 | 容器            | 40 |
| 7 3 | 血液テスト分析器      |    |
| 7 4 | 内視鏡検査要素       |    |
| 7 5 | 呼吸計           |    |
| 7 6 | 体温計           |    |
| 7 7 | カメラ           |    |
| 7 8 | 蓋部            |    |
| 7 9 | ヒンジ           |    |
| 8 0 | 開口部           |    |
| 8 1 | モータ           |    |
| 8 2 | ホイール          | 50 |

|       |                 |    |
|-------|-----------------|----|
| 8 4   | はみモータ           |    |
| 8 5   | 頭勒モータ           |    |
| 8 6   | 胸部バンドモータ        |    |
| 8 7   | 側部摺動手段          |    |
| 8 8   | 中央摺動手段          |    |
| 8 9   | 側部摺動手段          |    |
| 9 0   | 中央ばね            |    |
| 9 1   | 電子制御装置          |    |
| 9 2   | 鞍支持部            |    |
| 9 3   | 上方球状結合部         | 10 |
| 9 4   | 下方球状結合部         |    |
| 9 5   | 固定円筒部           |    |
| 9 6   | 可動円筒部           |    |
| 9 7   | 開口部             |    |
| 9 8   | ハウジング           |    |
| 9 9   | 障害部             |    |
| 1 0 0 | ばね              |    |
| 1 0 1 | 軸方向作動手段         |    |
| 1 0 2 | 垂直作動手段          |    |
| 1 0 3 | 水平作動手段          | 20 |
| 1 0 4 | 外側カバー           |    |
| 1 0 5 | 内側カバー           |    |
| 1 0 6 | 接合面             |    |
| 1 0 7 | ハウジング           |    |
| 1 0 8 | スリップウェイ         |    |
| 1 0 9 | ばね要素            |    |
| 1 1 0 | 軸               |    |
| 1 1 1 | 外側脚部            |    |
| 1 1 2 | 内側脚部            |    |
| 1 1 3 | 前輪              | 30 |
| 1 1 4 | 回転軸             |    |
| 1 1 5 | 方向アーム           |    |
| 1 1 6 | ピストン            |    |
| 1 1 7 | 一次流体ライン         |    |
| 1 1 8 | バルブ             |    |
| 1 1 9 | ステアリングホイール      |    |
| 1 2 0 | パイプ             |    |
| 1 2 1 | 自家動力モータ         |    |
| 1 2 2 | 後輪              |    |
| 1 2 3 | 中間部             | 40 |
| 1 2 4 | 後部ユニット          |    |
| 1 2 5 | 二次流体ライン         |    |
| 1 2 6 | ピストン作動軸         |    |
| 1 2 7 | 上部コネクティングロッド    |    |
| 1 2 8 | ビーム             |    |
| 1 2 9 | 作動軸受け           |    |
| 1 3 0 | 上部コネクティングロッド軸受け |    |
| 1 3 1 | 下部コネクティングロッド軸受け |    |
| 1 3 2 | 下部コネクティングロッド    |    |
| 1 3 3 | 方向付けアーム軸受け      | 50 |

|       |            |    |
|-------|------------|----|
| 1 3 4 | 支持部品       |    |
| 1 3 5 | 障壁部        |    |
| 1 3 6 | 鋤          |    |
| 1 3 7 | 鋤ピストン      |    |
| 1 3 8 | ピストンアーム    |    |
| 1 4 0 | 方向付けビーム    |    |
| 1 4 1 | 右流体ライン     |    |
| 1 4 2 | 左流体ライン     |    |
| 1 4 3 | 流体供給ライン    |    |
| 1 4 4 | 流体排出ライン    | 10 |
| 1 4 5 | ステアリングビーム  |    |
| 1 4 6 | 外側ハウジング    |    |
| 1 4 7 | 移動開口部      |    |
| 1 4 8 | 中央結合部      |    |
| 1 4 9 | 湾曲バー       |    |
| 1 5 0 | 直線バー       |    |
| 1 5 1 | コネクティングロッド |    |
| 1 5 2 | 垂直ビーム      |    |
| 1 5 3 | 保護蓋        |    |
| 1 5 4 | 中央結合部      | 20 |
| 1 5 5 | 凸状構造部の脚部   |    |
| 1 5 6 | 作動軸        |    |
| 1 5 7 | 支持軸        |    |
| 1 5 8 | 作動リング      |    |
| 1 5 9 | 支持リング      |    |
| 1 6 0 | 上部軸受け      |    |
| 1 6 1 | 下部軸受け      |    |
| 1 6 2 | 従動部        |    |
| 1 6 3 | ホイール       |    |
| 1 6 4 | ホイールアーム    | 30 |
| 1 6 5 | 作動リングアーム   |    |
| 1 6 6 | 支持リングアーム   |    |
| 1 6 7 | 支持アーム      |    |
| 1 6 8 | モータ        |    |
| 1 6 9 | 還元装置       |    |
| 1 7 0 | 水平スレッジ     |    |
| 1 7 1 | スレッジばね     |    |
| 1 7 2 | スレッジモータ    |    |
| 1 7 3 | 移動開口部      |    |
| 1 7 4 | ハウジング      | 40 |
| 1 7 5 | 電磁石        |    |
| 1 7 6 | リング        |    |
| 1 7 7 | ロッド        |    |
| 1 7 8 | カバー手段      |    |

## 【国際公開パンフレット】

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization  
International Bureau(43) International Publication Date  
24 October 2002 (24.10.2002)

PCT

(10) International Publication Number  
WO 02/082892 A2(51) International Patent Classification<sup>5</sup>: A01K 15/00

(81) Designated States (national): AE, AG, AL, AM, AT, AU,

(21) International Application Number: PCT/TR02/00016

AZ, BA, BB, BG, BR, BY, BZ, CA, CT, CN, CO, CR, CU,

(22) International Filing Date: 17 April 2002 (17.04.2002)

CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GI,

(25) Filing Language: English

GM, HR, HU, ID, IL, IN, IS, JP, KU, KG, KP, KR, KZ, LC,

(26) Publication Language: English

LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,

(30) Priority Data:

MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG,

2000/01003 17 April 2001 (17.04.2001) TR

SI, SK, SL, TI, TM, TN, TR, TT, TZ, UA, UG, US, UZ,

2000/01994 11 July 2001 (11.07.2001) TR

VN, YU, ZA, ZM, ZW.

2000/03372 26 November 2001 (26.11.2001) TR

(84) Designated States (regional): ARIPO patent (GL, GM,

2002/00639 11 March 2002 (11.03.2002) TR

KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),

(71) Applicant and

Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),

(72) Inventor: KURT, Mehmet [TR/TR]; Sarisakal Fabrikasi

European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR,

(74) Agent: BURSA PATENT, INC.; Tophane Ortakapaz Cad.

GB, GR, IE, IT, LU, MC, NL, PT, SE, TR); OAPI patent

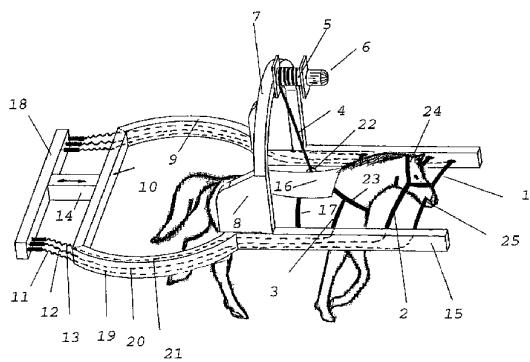
No.7, 16040 Bursa (TR).

(BF, BJ, CR, CG, CI, CM, GA, GN, GQ, GW, ML, MR,

NE, SN, TD, TG);

## Published:

— without international search report and to be republished


upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: AUTOMATIC SYSTEM-BASED ANIMAL TRAINING DEVICE



WO 02/082892 A2



(57) Abstract: This invention relates to an automatic animal training system serving a physical performance improvement and simulation means for the animals of particularly horse, camel or similar animals joining races throughout the world.

## AUTOMATIC SYSTEM-BASED ANIMAL TRAINING DEVICE

## TECHNICAL FIELD

5 This invention relates to an automatic animal training system serving a physical performance improvement and simulation means for the animals of particularly horse, camel or similar animals joining races throughout the world.

## STATE OF THE ART

The present patent application can be considered as a complementary part of 10 previous patent application, WO 01/97606 the applicant of which is the same as the instant application. Therefore, the subsequent attributions are mainly directed to this WO 01/97606 application.

Once the features affecting the performances of racehorses, camels and similar 15 animals throughout their active life are taken into consideration; it is scientifically accepted that origin, nutrition, caring, training factors have prior importance with respect to other factors. The origin of animals has a distinguished feature, since it comes in born of the animals by their nature.

Unlike the origin feature, the other above-mentioned factors can be exploited by 20 various methods, programs and devices so enabling exclusive manner of approach to the animals. Since the present application is based upon training process for improving physical performances and simulation means by the automatic training program of animals with respect to real racing conditions, the other factors are excluded in the scope of the present application.

Patent application WO 01/97606 disclosing complete automatic system-based 25 training notion of animals, especially participating races, has been filed by an applicant the owner of which is the same as the present application. The previous application discloses a training device the lateral and rear sides of which are surrounded by a flexible material and the front side is covered by a locking

mechanism and furthermore a tractor placed to front or rear side of the training device.

In this previous application, it has been stated that the training device is guided by wheels embodied the lateral sides of the device such a way that the wheels are 5 disposed in rails and then the device is moved accordingly, or alternatively the device is guided by some means attached to a line which is located upper side of the device.

In addition to these features, the previous application discloses orientation pattern 10 of the training devices, namely these devices can be employed individually around racecourses or alternatively these devices can be employed multiply following each other.

These previous application is the unique approach as to complete automatic-based animal training system and brings about many advantages with the proposing features thereof. As undoubtly known that the present animal training 15 processes are based on human intervention, in other words animal training programs involve with human-controlled manner. This human-controlled or based training approach leads the animals become physically disabled during the training process. The annual rate leading the horses disabled so huge that approximately 90% colts which would potentially become a racehorse results a termination of 20 race life of the colts even at the beginning.

The reason leading a considerable disabling rate of the race animals, is mainly due to physiologically lack of harmony between the trainer and the animal. During the training the animal is forced to behave the manner of trainers demand and this lacking of harmony leads the animal physically disabled itself.

25 Furthermore, taking into consideration of human intervention for the training of animals participating long-distance races particularly encountered in Arabic countries, many disadvantages are confronted. This is indeed the case, when long-distance and accordingly long-term races are of concern, animal physical disabling problem arises since the eccentrical position of the rider on the animal 30 leads the loss of animal stability during the training or race time.

Although some other training facilities are known from the state of the art, especially the patent US 4 266 508 and US 4 619 222, none of these patents suggests a complete automatic training system for facilitating concrete simulation with respect to the racing conditions as the present application suggests.

5 For example, US 4 266 508 application discloses a frame in which animals are introduced. This frame is pulled by a tractor means (self-powered vehicle) only from the front side of the frame and wheels are placed at the rear side of the frame.

US 4 266 508 application is the first proposal serving an animal surrounded 10 training device and bears some significant advantages. Nevertheless, pulling the frame from only the front side by a vehicle, which is non-integrated to the frame, put forwards considerable disadvantages. The most inappropriate effect is referred to placement of the vehicle to the front side of the frame, since animals become 15 easily frightened by the existence of such a vehicle in front of running direction of the animals. This would lead insufficient training practice of the animals accordingly. Besides, since the tractor means (vehicle) is not connected to the frame directly, in other words the wheels are connected to the frame by virtue of 20 supplementary axles, changing the direction of the frame would be delayed due to inaccurate direction control mechanism. These direction-changing delays would again lead insufficient training practice of the animals.

Even the inventor of the present and also former application, PCT/ TR02/ 00048, acknowledges the deficiency i.e. pulling the training device by a tractor means or a vehicle like an automobile, jeep etc., since allocating such a tractor means cannot achieve an integrated training device.

25 As for the US 4 619 222, this application discloses mobile means connected from one end to the head of the animal and from other end to some guiding means by virtue of wheels. As it is seen from US 4 619 222, neither confining means surrounding the animal to be trained nor tractor means are employed in this application. In other words, in case of irritation, it is obvious that the animal can 30 hurt itself due to lack of confining means.

Other animal training facilities are those so-called manege, running bands or tracks. These facilities are actually utilized for tempering animals particularly horses, and including abstract embodiments i.e. real race conditions are not met due to lacking of concrete simulators in these facilities.

- 5 In addition to training process of animals, the previous application has also suggested monitoring means for evaluating physiologic features in real-time performance of the animals being trained. And data acquired from these monitoring means are evaluated in a unit connected to the training device.

With the suggested technical features, the previous application aimed to minimize  
10 human intervention to animal training processes and achieved this aim by the suggested automatic embodiments.

However, the applicant is aware that the features suggested in the previous application have some deficiencies; therefore the instant application is drafted for overcoming these deficiencies.

- 15 For example, in the previous application the locking mechanism placed front side of the training device serves that the horse confined in the device, however at the same time the locking mechanism falls the outside of the view angle of the horse. This deficiency leads the horse to lift its head upwards and lower its head downwards simultaneously during training, consequently decreasing performance  
20 of the animal.

Another deficiency experienced during training is referred to constructional disadvantage of the training device. During training, the horse may become nervous and kick the lateral sides of the device or the legs may go outside of the device. As a result the horse may hurt its legs.

- 25 Another deficiency as to the training device in the previous application is that the lack simulation means with respect to racing conditions. Namely the deficiency is the lack of mass of the jockey or the trainer during training as encountered in real case.

Another deficiency is associated with securing means of the animals being trained. Basically, disabling of the horse in the device would not be prevented when an external effect takes place. For example, there is no mechanical component securing the animal in case of tottering or falling down during training.

- 5 In the previous application, "guiding" of the device by means of wheels from lateral sides thereof, and also "guiding" the device from the upper side through the racecourse thereof, may lead to notion that the actuation means of the devices are limited. In the event of individual or multiple utilization of the training devices, it is obvious that some alternative actuation means are strictly required.
- 10 Another important deficiency in association with the previous application is that, lacking of a pre-training facilities. This indeed the case, since most of the time the animal which will be subjected to an automatic-based training program by employing a device covered by confinement means resist this program at al.

Furthermore, in none of the previous applications it has been disclosed an 15 embodiment rendering a smooth running ground for the upcoming animals. This aspect should be taken into consideration since the ground of racecourse is generally coated by sand.

In the previous application it has been disclosed many automatic embodiments for 20 achieving complete automatic animal training facility. However, since in real-time races the animals are managed by human, simulative means have been lacking in the previous application. Simulation means must be promoted in the automatic training facility for a smooth transition between the training program and real-time racing conditions. Particularly, in the previous application, lacking of rider's commands to the animal does not reflect the real-time racing conditions during the 25 training program.

In real-time racing conditions, bit and bridle should be simultaneously interfered by the rider for enabling a complete control of the animal so that the race is won by the animal. Capability of controlling the animal is one of the determining aspects for achieving the best results.

Another feature that should be controlled during racing is the saddle, indeed incapability of seating of the rider on the animal during race would disturb the animal and resulting an obstacle for winning the race.

Furthermore another deficiency that has not been disclosed by the previous 5 application is that incapability of displacement of the lateral coverages. This deficiency would cause the inability of the position of the animal in the training device and resulting the incapacity of the animal for the real-time adaptation.

#### **DESCRIPTION OF THE INVENTION**

The object of the present invention is to provide a pre-training facility for 10 orientation of racehorses or similar animals being trained by automatic-based system.

Another object of the present application is to provide alternative means for moving automatic training devices.

Further object of the present application is to provide training stabilization of 15 racehorses or similar animals during training and to provide simulation means with respect to real-time racing conditions.

Another object of the present application is to provide monitorization of performances of the animals by real-time evaluation bio-mechanical and physiological features thereof.

20 Yet furthermore another object of the present application is to provide a complete adaptation of the animal to the racing conditions.

Another object of the present invention is to provide an integrated animal training device, particularly integration of coverages surrounding the animal with tractor means.

25 The technical features in the scope of the instant application are those; a pre-training unit for later automatic training facility of animals, mechanical components developed in the automatic training device, alternative embodiments for actuating the automatic training device and integrated animal training device i.e. integration

of coverages surrounding the animal and control unit comprising self-powered motor and device direction control means.

The components comprising the pre-training unit are; convex structures arranged predetermined spaces with respect to each other around a running track, and 5 these convex structures are fixed to the ground; and static structures comprising rails around the running track and wheels disposed in these rails; and dynamic structures moving by the animal subjected to pre-training program. Furthermore, in order to enhance the extent of adaptation of the animal to the essential automatic 10 training program, the animal is in interaction with the rails placed top section of the convex structures by connection means placed the breast section of the animal body.

The animal, subjected to pre-training program is preferably connected from three 15 distinct locations from the body to the static structures by virtue of attachment means. These attachment means have wheels at the end in contact with the static structures.

In the process of pre-training, the animal is confined in a device lateral and rear sides of which are surrounded and similar to the device utilized in the training program. This device utilized for pre-training purpose be able to move in the static structures.

20 The animal subjected to pre-training process, is fastened to the static structures via belts, cordons etc. from bit being at the mouth of the animal, bridle being at the head of the animal, and saddle being at the upper region of the animal. By employing such pre-training facility, the animal is completely adapted to the automatic training process.

25 Regarding the training device in the previous application, in the present application, some arrangements are embodied for stabilizing the location and increasing safety conditions of the animal in the training device. The animal is connected to the device preferably from four distinct region of the body by belts, cordons etc. These regions are: the bit being at the mouth region, bridle being at 30 the head region, the chest band being at the chest region, and saddle being at the

upper region of the animal. These connection means are on the other hand connected to the training device by spring means for increasing flexibility thereof. Whereby, the animal being in the training device is able to make relative displacements with respect to the device. Furthermore, a mechanism is embodied 5 for suspending the animal in the device in case the animal totters or disconnects the contact of legs of the animal. For providing simulation conditions, various mass elements can be attached to the saddle and so the mass corresponding to the jockey is balanced during training.

The saddle is located on the upper side of the animal by virtue of a drum and 10 motor mechanism, as a part of the mechanism a locking means are embodied for adjusting the vertical position of the saddle.

Another feature of the present application is that an alternative mechanical-based 15 actuation mechanism for moving the training devices. According to this actuation mechanism, one or plurality of gears and movable platforms by these gears throughout the training racecourse are embodied.

For achieving an adaptation of the animal to the real-time racing conditions, some 20 components have been embodied in the training device. The above-mentioned bit, bridle and chest band connection means are controlled by motors movable on sliding rails. And the motors are actuated by an electronic unit so that optionally these connection means are pulled and released for controlling the animal. Furthermore the saddle positioned on the animal is capable of rotating and translating in the three dimensional space. In other words the saddle has six 25 degrees of freedom.

Pulling and releasing, i.e. displacement, of the bit, bridle and chest band 30 connection means are adjusted by the electronic control unit which is coded according to the training or race course distance so that, like the real-time racing conditions, the animal is stimulated in accordance with the certain distances with respect to the training course.

Furthermore the lateral coverages of the training device are capable of moving so that the animal in the training device is positioned in certain locations.

Since the present and the previous applications propose a complete system for training of animals, especially the horses, a laboratory for monitoring the online performances of the animals during training program and preferably moved with the training device is embodied. In this laboratory, preferably the following 5 performance parameters are monitorized online:

- Measuring the heart functions of the animal by EKG (electro cardiograph)
- Taking blood samples for identifying physical conditions of the animal and for identifying potential diseases that may adversely affect the animal. Consequently, the items can be deduced from the blood sample; blood cell (eritrosit), total protein, water percentage (dehydration), lactic acid, 10 hemoglobin value, enzyme value, leucocyte value etc. can be determined.
- Identifying the conditions of the internal organs of the animal such as internal side of nose, stomach etc. by endoscopic means for determining performance conditions of the animal.
- Identifying other parameters such as CO<sub>2</sub> value of the breath, respiration 15 number per unit of time, body temperature, and data of urological system.
- Identifying dynamic analysis of bones of the animal by virtue of radioscopic means.
- Measuring strains of muscles of the animal.

20 During training, EKG measurement is performed via electrodes placed on particular body regions of the animal, and these measured values can be printed out or can be saved in a computer data carrier in case of retrieving thereof. The said computer can be located both in the mobile laboratory or in a different location other than the mobile laboratory.

25 During training, so as to take blood samples and analyzing the above-mentioned parameters, an injection is placed on the animal. By doing so various blood-related parameters are analyzed and the resultant data of these analyzes can be saved in a computer data carrier in case of retrieving thereof. The said computer can be

located both in the mobile laboratory or in a different location other than the mobile laboratory.

As for the endoscopic facilities, since online measurement of endoscopy-related parameters can not be achieved technically, the measurement thereof is made

5 immediately after the training by means of endoscopic means placed in the mobile laboratory. Resultant data of the endoscopic means can be saved in a computer data carrier in case of retrieving thereof. The said computer can be located both in the mobile laboratory or in a different location other than the mobile laboratory.

Respiration sequence, CO<sub>2</sub> value are determined by detecting means placed in

10 front of the nose region of the animal, and the measured values are controlled by monitorization means online. Furthermore, resultant data of the these measurements can be saved in a computer data carrier in case of retrieving thereof. The said computer can be located both in the mobile laboratory or in a different location other than the mobile laboratory.

15 Body temperature measurement is performed by means of thermometer located several regions of the body of animal. Resultant data of the temperature measurement can be saved in a computer data carrier in case of retrieving thereof. The said computer can be located both in the mobile laboratory or in a different location other than the mobile laboratory.

20 Radioscopic measurements are performed by various cameras placed in several locations of the training device. Resultant data of the radioscopic means can be saved in a computer data carrier in case of retrieving thereof. The said computer can be located both in the mobile laboratory or in a different location other than the mobile laboratory.

25 In addition to the above-mentioned parameters, during training, speed of the animal can be determined via a tacometer or a similar means. Resultant data of speed measurement can be saved in a computer data carrier in case of retrieving thereof. The said computer can be located both in the mobile laboratory or in a different location other than the mobile laboratory.

For the integrated animal training device comprising lateral and rear coverages surrounding the animal with control unit comprising self-powered motor and device direction control means, wheels are placed at the lower side of the lateral coverages. Furthermore, control unit integrated to the coverages are carried by 5 another group of wheels.

Integrated animal training device is directed by virtue of the wheels placed lower side of the lateral coverages. These wheels are connected to transmission pivots which are connected to further transmission means. These transmission means are actuated by hydraulic provided by self-powered motor placed in the control unit 10 at the rear region of the integrated animal training device.

For securing the location of the animal being in the training device a confinement means is embodied preferably to the lateral coverages of the training device from ends thereof.

An alternative integrated animal training device is also proposed in the scope of 15 the present invention. In this alternative structure, the mechanism providing directing the front wheels is based upon assembling the mechanical components alongside the lateral coverages but not alongside the convex structures. Furthermore, some covering means comprising air bags are placed to the training device so that the animal can be held a desired location in the device.

20 Another alternative embodiment is referred to connection means providing connection of the animal to the training device. In this alternative embodiment instead of complete mechanical-based connection means, a magnetic-based connection is proposed. A magnet, preferably an electro-magnet, is disposed in the lateral coverages and a ring means connected from one end to the saddle and 25 associated from other end with the electro-magnet is controlled through magnetic force originated by the electro-magnet.

Furthermore another proposal for the animal training device is referred to movable convex structures. Particularly the legs in association with the lateral coverages are capable of displacing in housings formed in the lateral coverages.

**DESCRIPTION OF THE FIGURES**

Further objects and advantages of the present invention will become apparent upon reading the following description taken in conjunction with the appended drawings wherein:

5 Figure 1 illustrates the animal connection means to the training device and convex structures perpendicular to the ground in conjunction with the present invention.

Figure 2A illustrates the pre-training facility in conjunction with the present invention.

10 Figure 2B illustrates the major components for alternative structures used for pre-training facility in conjunction with the present invention.

Figure 3 illustrates the actuation mechanism of the training devices in conjunction with the present invention.

Figure 4A illustrates the detailed view of mobile platform for the training devices in conjunction with the present invention.

15 Figure 4B illustrates the chain mechanism for actuating multiple training devices in conjunction with the present invention.

Figure 5 illustrates the actuation mechanism of the training devices from the lateral sides thereof in conjunction with the present invention.

20 Figure 6 illustrates the actuation mechanism of the training devices from upper side thereof in conjunction with the present invention.

Figure 7 illustrates the movable coverage and front blockage element for the training devices in conjunction with the present invention.

Figure 8 illustrates the air-bags for fixing the location of the animal in the training device in conjunction with the present invention.

25 Figure 9 illustrates the perspective view of the closed-form training device with laboratory unit in conjunction with the present invention.

Figure 10 illustrates the inner components of the closed-form training device with laboratory unit in conjunction with the present invention.

Figure 11 illustrates electronic displacement controlled connection means in conjunction with the present invention.

5 Figure 12A illustrates saddle mechanism with 6 degree of freedom in conjunction with the present invention.

Figure 12B illustrates the top view of the saddle in conjunction with the present invention.

10 Figure 13 illustrates lateral coverages of the training device in conjunction with the present invention.

Figure 14 illustrates the lateral coverages one within the other in conjunction with the present invention.

Figure 15 illustrates the perspective view of the integrated animal training device in conjunction with the present invention.

15 Figure 16 illustrates the directing wheels of the integrated animal training device in conjunction with the present invention.

Figure 17 illustrates the perspective view of the confinement means in conjunction with the present invention.

20 Figure 18 illustrates the perspective view of the alternative integrated animal training device in conjunction with the present invention.

Figure 19 illustrates the front and rear covering means in conjunction with the present invention

Figure 20 illustrates the mechanism providing displacing of the convex structures with respect to the lateral coverages in conjunction with the present invention.

25 Figure 21 illustrates the magnetic-based structure disposed in the lateral coverages in conjunction with the present invention.

**REFERENCE NUMBERS OF THE COMPONENTS**

|    |                             |    |                       |
|----|-----------------------------|----|-----------------------|
| 1  | Bit connection means        | 21 | Chest band cordon     |
| 2  | Bridle connection means     | 22 | Ring                  |
| 3  | Chest band connection means | 23 | Chest band            |
| 4  | Saddle connection means     | 24 | Bridle                |
| 5  | Drum                        | 25 | Bit                   |
| 6  | Motor                       | 26 | Upper guide           |
| 7  | Convex structure            | 27 | Wheel                 |
| 8  | Blockage part               | 28 | Plate holder          |
| 9  | Curve coverage              | 29 | Frame                 |
| 10 | Movable locator             | 30 | Frame upper element   |
| 11 | Bit spring                  | 31 | Frame bottom element  |
| 12 | Bridle spring               | 32 | Lateral guide         |
| 13 | Chest band spring           | 33 | Legs                  |
| 14 | Pushing means               | 34 | Plate                 |
| 15 | Lateral coverage            | 35 | Wheel                 |
| 16 | Saddle                      | 36 | Motor                 |
| 17 | Saddle holder               | 37 | Motor                 |
| 18 | Fixed body                  | 38 | Actuator gear wheel   |
| 19 | Bit cordon                  | 39 | Actuating teeth       |
| 20 | Bridle cordon               | 40 | Mobile platform teeth |

|    |                           |    |                     |
|----|---------------------------|----|---------------------|
| 41 | Mobile platform           | 61 | Chain               |
| 42 | Holders                   | 62 | Rail                |
| 43 | Groove                    | 63 | Mobile laboratory   |
| 44 | Wheel                     | 64 | Motor               |
| 45 | Rear coverage             | 65 | Wheel               |
| 46 | Front coverage            | 66 | Mobile unit         |
| 47 | Joint                     | 67 | EKG device          |
| 48 | Cylinder piston mechanism | 68 | Computer            |
| 49 | Front blockage housing    | 69 | Electrode           |
| 50 | Front blockage element    | 70 | EKG cable           |
| 51 | Cylinder piston mechanism | 71 | Needle              |
| 52 | Interface region          | 72 | Tub                 |
| 53 | Air-bags                  | 73 | Blood test analyzer |
| 54 | Air-bag openings          | 74 | Endoscopy element   |
| 55 | Compressor                | 75 | Respiration meter   |
| 56 | Connection pipe           | 76 | Thermometer         |
| 57 | Air intake opening        | 77 | Cameras             |
| 58 | Column                    | 78 | Lid                 |
| 59 | Wheel                     | 79 | Hinge               |
| 60 | Pin                       | 80 | Opening             |

|     |                         |     |                            |
|-----|-------------------------|-----|----------------------------|
| 81  | Motor                   | 102 | Vertical actuation means   |
| 82  | Wheel                   | 103 | Horizontal actuation means |
| 84  | Bit motor               | 104 | Outer coverage             |
| 85  | Bridle motor            | 105 | Inner coverage             |
| 86  | Chest band motor        | 106 | Interface                  |
| 87  | Side sliding means      | 107 | Housing                    |
| 88  | Middle sliding means    | 108 | Slipway                    |
| 89  | Side sliding means      | 109 | Spring element             |
| 90  | Middle spring           | 110 | Pivot                      |
| 91  | Electronic control unit | 111 | Outer leg                  |
| 92  | Saddle bear             | 112 | Inner leg                  |
| 93  | Upper spherical joint   | 113 | Front wheels               |
| 94  | Lower spherical joint   | 114 | Rotary pivot               |
| 95  | Fixed cylinder          | 115 | Direction arm              |
| 96  | Movable cylinder        | 116 | Piston                     |
| 97  | Aperture                | 117 | Primary hydraulic line     |
| 98  | Housing                 | 118 | Valve                      |
| 99  | Obstruction part        | 119 | Steering wheel             |
| 100 | Spring                  | 120 | Pipe                       |
| 101 | Axial actuation means   | 121 | Self-powered motor         |

|     |                              |     |                           |
|-----|------------------------------|-----|---------------------------|
| 122 | Rear wheels                  | 143 | Feeding hydraulic line    |
| 123 | Intermediary part            | 144 | Evacuation hydraulic line |
| 124 | Rear unit                    | 145 | Steering beam             |
| 125 | Secondary hydraulic line     | 146 | Outer housing             |
| 126 | Piston-actuating pivot       | 147 | Displacement opening      |
| 127 | Upper connecting rod         | 148 | Middle connection         |
| 128 | Beam                         | 149 | Curved bar                |
| 129 | Actuator pivot bearing       | 150 | Straight bar              |
| 130 | Upper connecting rod bearing | 151 | Connecting rod            |
| 131 | Lower connecting rod bearing | 152 | Vertical beam             |
| 132 | Lower connecting rod         | 153 | Protective lid            |
| 133 | Direction arm bearing        | 154 | Middle connection         |
| 134 | Holder pieces                | 155 | Convex structure legs     |
| 135 | Barrier part                 | 156 | Actuator pivot            |
| 136 | Harrow                       | 157 | Support pivot             |
| 137 | Harrow piston                | 158 | Actuation ring            |
| 138 | Piston arm                   | 159 | Support ring              |
| 140 | Directing beam               | 160 | Upper bearings            |
| 141 | Right hydraulic line         | 161 | Lower bearings            |
| 142 | Left hydraulic line          | 162 | Follower                  |

|     |                   |     |                      |
|-----|-------------------|-----|----------------------|
| 163 | Wheel             | 171 | Sledge spring        |
| 164 | Wheel arm         | 172 | Sledge motor         |
| 165 | Actuator ring arm | 173 | Displacement opening |
| 166 | Support ring arm  | 174 | Housing              |
| 167 | Holder arm        | 175 | Electro-magnet       |
| 168 | Motor             | 176 | Ring                 |
| 169 | Reductor          | 177 | Rod                  |
| 170 | Horizontal sledge | 178 | Covering means       |

**DETAILED DESCRIPTION OF INVENTION**

Figure 1 illustrates the perspective view of the animal training device in conjunction with the present invention. According to the Figure, the animal being in the device is preferably placed therein from four different location of the body. In this embodiment, bit connection means (1) from one end connected to the bit (25) being the mouth region of the animal and from the other end connected to the lateral coverage (15); bridle connection means (2) connected from one end to the bridle (24) being the head region of the animal and connected from other end to the lateral coverage (15); chest band connection means (3) connected from one end to the chest band (23) being the chest region of the animal and connected from other end to the lateral coverage (15) are seen. The connection means mentioned above are placed symmetrically to the lateral coverage (15). Another connection means is that the saddle connection means (4) connected from one end to the saddle (16) and connected from other end to the convex structures (7). This last connection means facilitates the animal to be suspended in the training device in case the animal totters or falls down.

The convex structure (7) surrounding the upper side of the training device and the legs thereof are positioned to the lateral sides of the training device comprises, at the upper most region, a drum (5) and a motor (6) driving this drum (5). In the event of tottering or falling down of the animal, the force coming out as result of 5 the mass of the animal caused by the gravity is interpreted by a sensor located at the drum (5) and accordingly, the drum is driven by the motor (6) and the animal is lifted in upwards direction by the saddle connection means (4) attached to the saddle via a ring (22) on the saddle (16).

Another function related to the motor (6) and the drum (5) is that once the animal 10 is positioned in the training device, the vertical displacement of the saddle (16) is adjusted by means of this motor (6) and the drum (5). For achieving this goal, the saddle (16) is moved by the rotating the drum (5) via the motor (6) and then the saddle (16) is positioned on the animal. The displacement extent of the saddle (16) is determined by a locking means (not illustrated in the Figure) placed on the 15 drum (5).

The saddle (16) material is preferably made by silicon, rubber, plastic-based material and for achieving the simulation conditions with respect to the real racing conditions, some load between 10 kg. to 70 kg. is attached to the saddle (16).

Achievement of relative motion of the animal with respect to the training device 20 and so facilitating a flexible interaction between the animal and the training device, several cordons are located preferably through the lateral coverages (15). Each cordon is connected from one end to respective bit connection means (1), bridle connection means (2), and chest band connection means (3). The connection point between the cordons and the connection means is preferably the openings of 25 the lateral coverage for the connection means. As it is seen in the Figure 1, bit cordon (19) is attached to the bit connection means (1), bridle cordon (20) is attached to the bridle connection means (2), chest band cordon (21) is attached to the chest band connection means (3). These cordons (19,20,21) are connected to springs the one ends of which are connected to the fixed body.

30 As seen in the Figure 1, the bit cordon (19) is connected to the bit spring (11); the bridle cordon (20) is connected to the bridle spring (12); and the chest band

cordon (21) is connected to the chest band spring (13). The stiffness coefficients of the springs (11,12,13) are different preferably with respect to each other. The idea of embodying different springs having stiffness coefficients is to prevent the animal being in the device to hurt physically himself as a result of relative movements in the device. According to this idea, the stiffness coefficients of the springs can be arranged by chest band spring (13) > bridle spring (12) > bit spring (11).

In the scope of the present invention, some components have been designed to prevent to hurt the animal himself in the training device. The backside of the training device corresponding to the rear legs of the animal is curved and covered by a flexible material. The curved backside (9) is then joined to the lateral sides (15) of the training device.

Another precautionary feature is a blockage part (8) having partially closed formation and placed between the lateral coverages (15) and convex structure (7).  
15 This blockage part (8) is covered by a flexible material.

A movable locator (10) is placed at the rear section of the training device for preventing the location alterations of the animal in the device, particularly at the initiation and termination periods of the training. The movable locator (10) is driven by a pushing means (14) which is run by hydraulic mechanism by forward and backward directions as in the Figure 1. The movable locator can be placed at the front side of the training device (not shown in the Figure) whereby the animal being in the device can be hold as a predetermined position therein.

In the Figure 2A, pre training facility is shown before initiating essential training program. The object of employing such a pertaining facility is to adopt the animals to the essential training program. The pre training facility comprises static and dynamic elements. The static elements comprises upper guides (26) arranged throughout the course in which wheels, pulleys can be moved; and frames (29) covering the other static elements throughout the course and arranged by predetermined spaces. The frames (29) having a convex structure comprise a frame upper element (30) having a curved formation and a frame bottom element (31). Furthermore, lateral guides (32) for guiding movable connection means

connected one end to the animal and from the other end to the lateral guides (32). The lateral guides (32) are fixed to the ground via legs (33).

The dynamic elements in the scope of the present invention are characterized as follows. Similar to the animal training device, bit connection means (1) that 5 connected from one end to the bit being at the mouth region of the animal and connected from other end to the wheels (35) moved on the lateral guides (32); bridle connection means (2) that connected from one end to the bridle being at the head region of the animal and connected from other end to the wheels (35) moved on the lateral guides (32). The animal subjected to the pre training session is 10 surrounded by plates (34) from the sides. Moving mechanism of the plates (34) is preferably carried out by plate holders (28) connected to the wheels (27) moving in the upper guide (26). In addition to these technical features, the saddle (16) positioned on the animal is connected to the wheel (27) by saddle connection means (4).

15 Moving mechanism of the wheels (27) to which the plates (34) and the saddle (16) are connected is provided by a motor (36) connected thereto.

The dynamic elements employed for pre training session can be structured single or multiple whereby multiple training of the animals is then achieved. In the event of multiple pre training facility, the moving of the wheels (27) can be achieved by 20 employing single motor (36) for each wheel (27) or alternatively, one single traction motor can be used for all wheels. In this way, rigid means can be employed between the each plate couple for pulling thereof by a single traction motor.

In Figure 2B, an alternative construction is viewed for the pre training facility of 25 mechanical connection means. In this alternative structure, bit connection means (1) and bridle connection means (2) are fixed to the plates (34) and plate holders (28) are not connected to the wheels (27). Only the saddle connection means (4) is positioned to the saddle (16). Furthermore, the motor (36) actuating the system, is not positioned in the upper guide (26) region. As seen in the Figure 2B, the 30 motor (36) is located to the lateral sides of the plates (34). The motor (36) is moved with the plates (34) by means of wheels disposed in the lateral guides (32).

The other plate (34) the motor (36) is not connected thereon, is associated the other lateral guides (32) via wheels.

Two embodiments are proposed by the instant invention with respect to the previous inventions. In Figure 7, the rear side (coverage) (45) of the training device is opened by rotating thereof around a joint (47) disposed in the lateral coverage of the training device. Therefore, the training device comprises a fixed front coverage (46) and a rear coverage (45), which can be opened. The opening motion of the rear coverage (45) is performed by an actuator and a hydraulic cylinder-piston mechanism (48). One end of the cylinder-piston mechanism (48) is fixed to the front coverage (46) and the other end is fixed to the rear coverage (45), which can be opened and closed. The rear coverage (45) and the front coverage is combined in an interface plane (52). There is a front blockage housing (49) fixed to the front coverage (46) side. In this front blockage housing (49), a front blockage element (50) is disposed. Whereby a barrier is formed in front of the animal in case of necessity. As seen in the Figure 7, the front blockage element (50) is actuated preferably by a hydraulic-piston cylinder mechanism (51) via displacing the element (50).

In Figure 8, air bags (53) for positioning the animal location in the training device are illustrated. The air bags (53) are preferably disposed in the lateral coverages of the device. Air is compressed by a compressor (55) and passed through the connection pipe (56). Afterwards the air is introduced into the air passages by air intake opening (57) and the air bags are blown up towards the outside. Consequently, the animal is held a determined position in the device.

An alternative structure is seen in the Figure 3 for moving the training devices. According to the Figure the moving mechanism comprises a mobile platform (41) and an actuator gear wheel (38) driven by a motor (37) for the platform. As seen in the Figure 4A, the mobile platform (41) has preferably a U profile and at the bottom side mobile platform teeth (40) are formed thereof. These teeth are in contact with the actuating teeth (39) so that displacement of platform is performed. Since the training course comprises curved sections, the mobile platform (41) includes plurality of pieces for rotating when the curved sections are being turned.

As the training devices are fixed to the pieces, turning of the devices is achieved as the mobile platform pieces is turned around the curved sections. The mobile platform (41) can be driven with more than one actuator gear wheel (38) as well as one single actuator gear wheel (38).

5 In Figure 4A, the detailed view is given of the mobile platform (41). In order to provide a predetermined trajectory of the mobile platform (41), it should be guided accordingly. Achieving this, grooves (43) are formed in the inner lateral planes of the mobile platforms (41) having U shape. In these grooves (43) rotatable means like wheels (44) are disposed. The wheels (44) are fixed to the ground via holders 10 (42).

In Figure 4B, chain mechanism is illustrated for attaching the training devices to each other. In this chain mechanism, a column (58) situated on the mobile platform (41); pins (60) embodied the upper region of the columns (58); and wheels (59) disposed between the pins (60). The wheels (59) are capable of 15 moving in the rail located throughout the training course. The chains (61) are positioned between the mobile platforms (41). The mobile platform (41) is moved by a gear mechanism.

In Figure 5, an actuation mechanism is illustrated for the training devices throughout the training course. According to the Figure, wheels (82) movable in 20 rail by means of motors (81) connected thereof are seen. Training devices can be driven plurality of motors connected to each wheel or alternatively devices can be driven one single motor, which is coupled to one pulling training device. For the latter case, the other training devices are connected to each other some rigid mechanical components like chains.

25 Similar embodiment is shown in the Figure 6. In this Figure, training devices are moved by wheels (82) positioned upper side thereof and driven in rail. Each training device can be moved by a motor coupled to each wheel or alternatively there can be only one dedicated pulling device is employed for drive the other training devices by a motor connected to the wheel of the pulling device. For the 30 latter case, the other training devices are connected to each other some rigid mechanical components like chains.

In Figure 9, a closed form training device is illustrated. The closed form training device is designed to close the lateral and upper sides thereof. In Figure 9, a mobile laboratory (63) device is attached at the rear section of the training device. In other words, the training device and the laboratory unit (63) consist of a closed form mobile unit (66). A lid (78) is embodied in front of the mobile unit (66) the lateral, rear and upper side are closed thereof. The lid (78) is capable of moving downwards and upper wards directions by virtue of hinges (79). Furthermore, an opening (80) is formed in front side of the lid (78) so that the head of the animal can be projected.

10 The training device is driven by a motor (64) preferably an internal combustion engine and moved on the wheels (65) as seen in the Figure 10. In order to monitor the EKG of the animal being trained, some electrode means (69) are positioned on the body of the animal. Signals obtained from the electrode means (69) are transmitted by EKG cables (70) to the EKG device (67) in the laboratory (63) and  
15 can be printed out. In addition to that the signals obtained from the EKG device (67) are transmitted to the computer (68) and can be stored in this computer (68) for retrieval any time. The computer (68) can be located anywhere other than the training device.

20 During training or following the training session, a needle means (71) is positioned on the body of the animal for receiving blood samples from the animal. The received blood sample can be accumulated in a tub (72). As it seen in the Figure 9, the received blood sample is transmitted to blood test analyzer (73), and the data obtained from analysis can be stored in the computer (68) for retrieval any time.

25 In order to observe the conditions of the stomach, bronchus and noise of the animal just after the training session, endoscopies elements (74) are located in the mobile laboratory. The data obtained from the endoscopies element can be stored in the computer (68) for retrieval at any time.

30 In order to observe respiration conditions of the animal during training, a respiration meter (75) is positioned near the noise region of the animal. The data

obtained from the respiration of the animal can be stored in the computer (68) for retrieval at any time.

The animal subjected to training is observed in terms of body temperature changes during the training by means of thermometers (76) located various 5 regions of the body. The data obtained from the thermometers can be stored in the computer (68) for retrieval at any time.

Dynamic analysis of the animal being trained is performed by radioscopy means such as cameras (77) positioned various regions of the training device. The data obtained from radioscopy means can be stored in the computer (68) for retrieval 10 at any time.

The computer (68) mentioned above for storing the results of analysis can be located both in the training devices or alternatively any fixed region as a main frame computer.

Figure 11 illustrates electronic displacement controlled connection means. 15 According to the figure, the animal being in the training device is connected to the device from three different locations i.e. by bit connection means (1), bridle connection means (2) and chest band connection means (3). The other connection means is the saddle holder (17) surrounding the body of the animal. The saddle (16) is connected to a middle sliding means (88) structured between two convex 20 structures (7) by means of a saddle connection means (4) as seen in the Figure 11.

The motors (84,85,86) controlling the animal during training are positioned axially on the side sliding means (87,89), which are embodied between the convex structures (7). Axial movement of the motors (84,85,86) facilitates the stretching 25 and loosening of the connection means (1,2,3) and then the animal is controlled according to the training conditions.

In the best mode of the present invention, the movement of the motors (84,85,86) placed on the side sliding means (87,89) is achieved by an electronic control unit (91) providing real-time racing conditions. For example, in real-time racing

conditions, probably in the first 1000 m., the connection means (1,2,3) are held relatively stretched and particularly in the last distances towards the finish the connection means (1,2,3) are held relatively loosened. Therefore, considering the real race distances such as 2400 m. the animal is controlled by stretching and 5 loosening the connection means (1,2,3) by virtue of motors (84,85,86) actuated by the electronic control unit (91). Displacement amount of the motors (84,85,86) is achieved by coding the distance data into the electronic control unit (91). Furthermore the electronic control unit (91) is a programmable unit so that the 10 training conditions may be altered according to training distance. The electronic control unit (91) can be alternatively placed anywhere other than the training device.

In Figure 12A, the saddle (16) having six degree of freedom is viewed. This saddle (16) is connected to the middle sliding means (88) by saddle connection means 15 (4). According to the figure, a saddle bear (92) is engaged to the middle sliding means (88) and in the saddle bear (92) an upper spherical joint (93) pivotable in the perpendicular directions is disposed. At the bottom region of the upper spherical joint (93) a fixed cylinder (95) is located and a movable cylinder (96) capable of displacing in this fixed cylinder (95) is placed. A spring (100) is disposed in the fixed cylinder (95) for damping sudden forces originating from the 20 animal.

A lower spherical joint (94) is placed at the connection point of the movable cylinder (96) and the saddle (16) whereby the saddle (16) is capable of pivoting in three perpendicular directions. In the fixed cylinder (95) some hydraulic fluid is accumulated for providing damping effect of the movable cylinder (96).

25 In case of variation in the animal position in the training device, the saddle (16) and the cylinders (95,96) displaced to the position shown by dashed lines as in the figure. For more flexible structures, the number of cylinders can be increased.

In Figure 12B, the top view of saddle bear (92) is illustrated. As seen in the figure, 30 displacement of the upper spherical joint (93) is restricted by an obstruction part (99). The obstruction part (99) is preferably embodied having a U shape and comprises an aperture (97). The upper spherical joint (93) is capable moving in the

in a housing (98). In the figure, the dashed lines stands for the position of the dashed lines in Figure 12A.

In Figure 13 lateral coverages (15) of the training device are shown. In this alternative embodiment, the lateral coverages (15) are displaced via several 5 actuation means. For moving the coverages (15) in the axial direction, an axial actuation means (101), in the width direction an horizontal actuation means (103) and in the vertical direction a vertical actuation means (102) are embodied. These actuation means (101,102,103) are preferably placed to the lateral coverages (15) and can be both manually and electronically controlled. In Figure 13, the 10 displacement extent of the lateral coverages (15) is zero and once the lateral coverages (15) are moved the displacement will be gained with respect to the interfaces (106).

In Figure 14 illustrates the couple of lateral coverages capable of introducing one 15 within the other. This construction provides a flexible structure in the case of animal kicking the lateral coverages (15). According to the figure, an outer coverage (104) and an inner coverage (105) movable in the outer coverage (104) are embodied. For penetration of the inner coverage (104) into the outer coverage (105), a housing (107) is positioned to the outer coverage (104) and a slipway is positioned to the inner coverage (105), so that the slipway (108) can be penetrated 20 into the housing (107).

As seen in the Figure 14, a spring element (109) is placed between the outer coverage (104) and inner coverage (105). The spring (109) comprises an outer leg (111) attached to the outer coverage (104) and an inner leg (112) attached to the inner coverage (105). These legs (111, 112) are connected by a pivot (110) and a 25 middle spring (90) is disposed between these legs (111,112).

Figure 15 illustrates the perspective view of the integrated animal training device. According to the figure, a rear unit (124) integrated to the coverages through an intermediary part (123). A self-powered motor (121) is placed onto the rear unit (124). Rotational movement originated from the self-powered motor (121) is 30 transmitted to rear wheels (122) by differential mechanism.

Guiding the integrated animal training device is provided by front wheels (113). Changing the direction of the front wheels (113) is achieved by hydraulic supplied from the self-powered motor (121). Hydraulic is pumped by the self-powered motor (121) and transported by a pipe (120) to a valve (118) located under the steering wheel (119).

As the steering wheel is turned, a pivot connected to the steering wheel (119) directs the hydraulic through valve channels and then the hydraulic is transmitted by primary hydraulic line (117) or secondary hydraulic line (125) to the appropriate piston (116) chamber. The piston (116) is preferably placed to substantially upper 10 part of the convex structure (7) and on a piston-actuating pivot (126) for actuating this pivot.

As seen in the Figure 15, the primary and secondary hydraulic lines (117,125) are connected to two separate chambers in which cylinders are disposed of the piston (116). Once the valve (118) is directed through the steering wheel (119), hydraulic 15 is accumulated into one of these chambers of the piston (116) whereby the piston (116) actuates the piston-actuating pivot (126) linearly in horizontal direction.

As illustrated in Figure 16, as the piston-actuating pivot (126) is moved, an upper connecting rod (127) is actuated accordingly. For structural integrity, an actuator pivot bearing (129) is placed between the piston-actuating pivot (126) and the 20 upper connecting rod (127). The movement is further transmitted to a rotary pivot (114) connected from one side to the upper connecting rod (127) and placed in vertical direction. For supporting the structure, a beam (128) is embodied at the junction point of the upper connecting rods (127) and the rotary pivots (114) as parallel to the piston (116). Rotary motion of the rotary pivots (114) is transmitted 25 to lower connecting rods (132) through lower connecting rod bearings (131) and the motion is further transmitted to direction arms (115) connected from one end to the front wheels (113) and connected from other end to lower connecting rods (132). Similarly, for structural integrity, a direction arm bearing (133) is placed 30 between the direction arm (126) and the lower connecting rod (132). Since the direction arms (115) are placed relatively distant from the front wheel (113) centers, directing the front wheels (113) is achieved simply.

Front wheels (113) directing mechanism is mounted preferably upper side i.e. alongside the convex structures (7), since the animal to be trained can introduce into and leave the training device.

Figure 17 illustrates the perspective view of the confinement means or barrier part 5 in conjunction with the present invention. In case of the animal is frightened the barrier part (135) prevents the animal to go inside the training device. The barrier part is secured to the lateral coverages through holder pieces (134) which are preferably hydraulic-based pistons.

The barrier part is in contact with the backside of the animal once introduced into 10 the animal device. Since the barrier part is in contact with the animal directly, it is preferably made of flexible material and furthermore in order to enhance the flexibility thereof, spring means can be attached thereto.

A harrow (136) is placed at the backside of the integrated animal training device 15 for smoothing the ground as the training device moves on the ground. The harrow can be lifted up down by a harrow piston (137).

Figure 18 illustrates the perspective view of the alternative integrated animal training device. According to the figure, as the steering wheel (119) is turned, the steering beam (145) connected to the steering wheel (119) from one end and connected to the valve (118) from other end, lock or unlock the channels in the 20 valve (118) so that the hydraulic is directed in the desired direction. Preferably, the valve comprises four openings two of which are used to feed the hydraulic into the piston (116) ultimately providing direction change of the front wheels. The third opening is embodied for transmitting the hydraulic from hydraulic storage to the valve (118) by virtue of a feeding hydraulic line (143) and the fourth one is 25 embodied for evacuating the excess hydraulic to the hydraulic storage by virtue of an evacuation hydraulic line (144).

As seen in the Figure 18, the piston is fed with hydraulic from a right hydraulic line 30 (141) and a left hydraulic line (142). Depending on the coming hydraulic, i.e. from right or left line, a piston arm (138) connected to the piston (116) is displaced in forward or backward directions. Since the piston arm (138) is rigidly attached to a

directing beam (140), as the piston arm (138) is displaced accordingly the directing beam (140) is displaced in horizontal direction. For structural integrity, the directing beam (140) is supported by an outer housing (146), whereby the directing beam (140) is movable in the outer housing (146). Since the form of the directing beam (140) comprises a horizontal and a vertical component i.e. "T" like shape, horizontal displacement extent of the directing beam (140) is determined by the vertical component movable through displacement opening (147) formed in the outer housing (146).

The directing beam (140) movable in the horizontal direction by actuation of the piston (116) is attached to a curved bar (149) by virtue of a middle connection (148). This curved bar (149) is preferably disposed in the lateral coverages (15). Once the piston (116) actuates the directing beam (140), the curved bar (149) is moved and transfers its motion to a straight bar (150). Accordingly, the straight bar (150) transfers the motion to a connecting rod (151) further connected to a vertical beam (152) from the other end. Consequently, a direction arm (115) connected from one end to the vertical beam (152) and connected from other end to the front wheel (113) transfers the motion to the front wheel (113).

The above-mentioned components including piston (116), valve (118), directing beam (140), outer housing (146) etc. is covered by a protective lid (153) for preventing external effects thereof.

Figure 19 illustrates the front and rear covering means in conjunction with the present invention. Once the animal is placed in the training device, the front and rear regions of the animal are closed by means of covering means (178). The mechanism driving these covering means (178) is seen in the figure. Preferably, two pivots (156,157) are fixed vertically to the convex structure legs (155) through upper bearings (160) and lower bearings (161). One of the pivots, actuator pivot (156), is a screwed pivot and actuated by a motor (168) preferably at the bottom side. The motor (168) is preferably an electric-based motor, however it may be driven by energy provided from the self-powered motor.

An actuation ring (158) is annually placed to the actuator pivot (156). As the actuator pivot (156) is rotated, the actuation ring (158) screwed the inner surface is

displaced in upwards and downwards directions. Alongside the actuator pivot (156), a support pivot (157) is placed so that the gravity force of the covering means (178) is met by the support pivot (157). Similarly, a support ring (159) connected rigidly to the actuator ring (158) is annually placed to the support pivot (157) and capable of displacing in upwards and downwards directions.

An actuator ring arm (165) is fixed from one end to the actuator ring and pined from the other end to a wheel arm (164). The wheel arm is further pined from the other end to the center of a wheel (163) moving on a follower (162) comprising an eccentric pivot combination. A support ring arm (166) is pined from one end to the center of the wheel (163) and connected from other end to a holder arm (167) that is pined to fixed arm (179) connected to support ring (159).

The covering means (178) are driven as described below:

Once the actuator pivot (156) is rotated by the motor (168), the actuation ring (158) is displaced in vertical direction. In the mean time, the wheel (163) associated with the actuation ring (158) is moving on the follower (162) comprising eccentric pivot combination. As the wheel (163) is moving on the lower pivot of the eccentric pivot combination, the support ring arm (166) shifts its position and the covering means (178) connected to the support ring arm (166) shifts its position accordingly. Once the actuation ring (158) displaces to a certain point, the covering means (178) completely covers the front side of the animal.

Similar covering movement applies to when the actuation ring (158) moves on the upper pivot of the eccentric pivot combination. Once the actuation ring (158) displaces to a certain point, the covering means (178) is completely lifted and the front side of the animal is opened.

In the preferred embodiment of the invention, the above mentioned covering means (178) mechanism is assembled alongside the other leg of the convex structures so that the rear side of the animal are closed or opened.

Air bags are provided to the covering means (178) so that the position of the animal can be controlled by a flexible embodiment. These air bags can be inflated as desired to confine the position of the animal.

Figure 20 illustrates the mechanism providing displacing of the convex structures with respect to the lateral coverages in conjunction with the present invention. As seen from the figure, convex structure legs (155) are capable of moving in the lateral coverages (15) through the displacement opening (173). The convex structure legs (155) are connected to horizontal sledges (170) disposed in the lateral coverages (15).

10 The horizontal sledges (170) are driven by a sledge motor (172) and a sledge spring (178) is provided between the sledge motor (172) and the horizontal sledge (170). As the sledges (170) are driven by the sledge motor (172), the convex structure legs (155) connected to the sledges (170) move accordingly.

15 Figure 21 illustrates the magnetic-based structure disposed in the lateral coverages in conjunction with the present invention. Housings (174) in which electro-magnets (175) are disposed are formed preferably bilateral inner sides of the lateral coverages (15). A rod (177) capable of moving in the housing (174) and holding a ring (176) is embodied in the housing (174). This ring (176) is connected to the saddle (16) on the animal. Adjustable magnetic force provided by the 20 electro-magnet renders the ring (176) to displace any desired amount in the housing (174).

**CLAIMS****1. An automatic animal training system comprising:**

an animal training device comprising lateral and rear coverages covered by a flexible material and driven by a tractor means; the said animal training device is provided with connection means (1,2,3) for connecting the animal thereof, and at least one convex structure (7) surrounding the upper side of the training device and legs thereof are positioned on the lateral sides of the training device and saddle connection means (4) connected from one end to a saddle (16) on the animal and connected from other end to the convex structure (7) is provided for suspending the animal in case of necessity, and

10 a pre-training system comprising plurality of frames (29) having convex formation and fixed to the ground, and plurality of lateral guides (32) fixed to the ground and extending through the frames (29), and guiding wheels (35) positioned thereon, and an upper guide (26) positioned to the top side of the frames (29) and extending through the frames (29) and guiding wheels (35) positioned therein,

15 a mobile unit (66), lateral, rear and upper sides of which being closed and comprising said training device and a mobile laboratory (63) comprising a computer (68) an EKG device, a blood test analyzer (73) and an endoscopy element.

20 2. An automatic animal training system according to claim 1, characterized in that said connection means comprises a bit connection means (1) connected to bit (25) mouth region of the animal, bridle connection means (2) connected to bridle (24) being at the head region of the animal, a chest band connection means (3) connected to chest band (23) being at the chest region of the animal.

25 3. An automatic animal training system according to any one of the preceding claims, characterized in that said saddle connection means (4) is connected to the saddle (16) from one end by a ring (22) and the other end wrapped on at

least one drum (5) which is actuated by a motor (6) and the drum (5) and the motor (6) are preferably positioned to the upper region of the said convex structure (7) and a sensor sensing the animal mass so that actuate the motor.

4. An automatic animal training system according to any one of the previous claims, characterized in that said saddle (16) is preferably made from silicon, plastic, chemical based, or rubber material and capable of holding 10 to 70 kg mass.

5. An automatic animal training system according to any one of the previous claims, characterized in that said saddle (16) is moved upper and downward directions by the said drum (5) and the motor (6) actuating thereof and a locking means is provided for adjusting the displacement of the saddle (16).

10 6. An automatic animal training system according to any one of the previous claims, characterized in that plurality of cordon means (19,20,21) are disposed in the lateral sides of the training device and connected to said connection means (1,2,3).

15 7. An automatic animal training system according to any one of the previous claims, characterized in that the number of said cordons is preferably three and a bit cordon (19) is connected to the bit connection means (1); a bridle cordon (20) is connected to the bridle connection means (2); and a chest band cordon (21) is connected to the chest band connection means (3).

20 8. An automatic animal training system according to any one of the previous claims, characterized in that plurality of springs (11,12,13) are connected from one ends to the body of the training device and connected from other ends to the said cordons (13,20,21).

25 9. An automatic animal training system according to any one of the previous claims, characterized in that a bit spring (11) is connected to the bit cordon (19); a bridle spring (12) is connected to the bridle cordon (20); and a chest band spring (13) is connected to the chest band cordon (21).

10. An automatic animal training system according to any one of the previous claims, characterized in that plurality of blockage parts (8) are positioned to the connection point of the said convex structure (7) and the said lateral sides of the training device, whereby the legs of the animal in the training device are avoided to go over the device.

5

11. An automatic animal training system according to any one of the previous claims, characterized in that a curve coverage (9) corresponding a portion of said lateral sides of the training device is provided whereby the back legs of the animal is avoided to hurt in the event of bad-temper of the animal.

10 12. An automatic animal training system according to any one of the previous claims, characterized in that at least one movable locator (10) is positioned at the rear side of the animal training device and the said movable locator (10) is driven forward and backward directions by at least one pushing means (14) being preferably a hydraulic mechanism.

15 13. An automatic animal training system according to any one of the previous claims, characterized in that at least one movable locator is positioned at the front side of the animal training device and the said movable locator is driven forward and backward directions by at least one pushing means being preferably a hydraulic mechanism.

20 14. An automatic animal training system according to any one of the previous claims, characterized in that said rear side (coverage) is capable of opening or closing by rotating the lateral sides around plurality of joints (47) disposed in the said lateral sides whereby the embodiment defining a movable rear coverage (45) and a fixed front coverage (46).

25 15. An automatic animal training system according to any one of the previous claims, characterized in that at least one actuation means (48) is fixed from one end to the said rear coverage (45) and fixed from other end to the front coverage (46).

16. An automatic animal training system according to claim 15, characterized in that said actuation means (48) is a cylinder-piston mechanism.
17. An automatic animal training system according to any one of the previous claims, characterized in that a front blockage housing (49) is positioned at the front region of the training device and a front blockage element (50) movable in the said front blockage housing (49).
18. An automatic animal training system according to claim 17, characterized in that at least one actuation means (51) is provided for driving the said front blockage element (50).
- 10 19. An automatic animal training system according to claim 18, characterized in that the said actuation means is a cylinder-piston mechanism.
20. An automatic animal training system according to any one of the previous claims, characterized in that plurality of air bags (53) are disposed in the said lateral coverages.
- 15 21. An automatic animal training system according to any one of the previous claims, characterized in that openings (54) comprise the air bags (53).
22. An automatic animal training system according to any one of the previous claims, characterized in that a compressor (55) is provided for blowing the air-bags (53), a connection pipe (56) for handling the air received from the compressor (55) to the training device, and an air intake opening (57) on the training device.
23. An automatic animal training system according to claim 1, characterized in that the said frames (29) comprises at least one frame upper element (30) and at least one frame bottom element (31).
- 25 24. An automatic animal training system according to any one of the claims 1 and 23, characterized in that plurality of legs (33) are provided for fixing to the lateral guides to the ground.

25. An automatic animal training system according to any one of the claims 1, 23 to 24, characterized in that plurality of wheels (27) are disposed in the said upper guide (26), and at least one motor (36) driving the wheel (27).

26. An automatic animal training system according to any one of the claims 1, 23 to 25, characterized in that plates (34) are attached to the wheels and the animals located therein, and rigid plate holders (28) connected to the plates (34).

27. An automatic animal training system according to any one of the claims 1, 23 to 26, characterized in that saddle connection means (4) is connected from one end to the wheel (27) and connected from other end to a saddle (16) on the animal.

28. An automatic animal training system according to any one of the claims 1, 23 to 27, characterized in that bit connection means (1) is connected from one end to the bit (25) being at the mouth region of the animal and connected from other end to wheels movable in the lateral guide (32); bridle connection means (2) is connected from one end to the bridle (24) being at the head region of the animal and connected from other end to wheels movable in the lateral guide (32).

29. An automatic animal training system according to any one of the claims 1, 23 to 28, characterized in that the said bit connection means (1) is connected from end to the bit (25) and connected from other end to the plates (34) and the said bridle connection means (2) is connected from one end to the bridle (24) and connected from other end to the plates (34).

30. An automatic animal training system according to any one of the claims 1, 23 to 29, characterized in that the said motor (36) is connected from one end to the lateral sides of the plates (34) and connected from other end to the lateral guides (32) by means of wheels (27).

31. An automatic animal training system according to any one of the claims 1, 23 to 30, characterized in that in case of pulling the pre training devices by one

tractor device, a single pulling motor (36) having a wheel (27) attached thereof is provided and rigid connection means connected to the each pre training device.

32. An automatic animal training system according to any one of the previous 5 claims, characterized in that plurality of mobile platforms (41) are provided for holding the training devices and formed teeth (40) thereunder; and at least one actuator gear wheel (38) is connected to a motor (36) thereof for driving the mobile platforms (41)

33. An automatic animal training system according to any one of the previous 10 claims, characterized in that the said mobile platforms (41) comprise plurality of components arranged one another.

34. An automatic animal training system according to any one of the previous 15 claims, characterized in that the said mobile platforms (41) comprise preferably "U" shape and grooves (43) formed inner side of the mobile platforms (41) for moving wheels (44) therein.

35. An automatic animal training system according to any one of the previous claims, characterized in that plurality of holders (42) are fixed to the ground for holding wheels (44).

36. An automatic animal training system according to any one of the previous 20 claims, characterized in that a column (58) is situated on the mobile platforms (41), plurality of pins (60) disposed the upper region of the column (58) and wheels disposed between the pins (60).

37. An automatic animal training system according to any one of the previous 25 claims, characterized in that chains (61) are provided for connecting the each mobile platform (41) to each other.

38. An automatic animal training system according to any one of the previous claims, characterized in that the said training devices are actuated by a motor (46) in association with wheels guided to the rails and the wheels are positioned at the lateral side of the said lateral coverages.

39. An automatic animal training system according to claim 39, characterized in that in case of pulling the devices by a single training device, a motor (46) is provided to a pulling wheel (45) and rigid connection means positioned between the pulled wheels.

5 40. An automatic animal training system according to any one of the previous claims, characterized in that the said training devices are actuated by a motor (46) in association with wheels guided to the upper side of the training devices.

10 41. An automatic animal training system according to claim 41, characterized in that in case of pulling the training devices by a single device, a motor (46) is provided to a pulling wheel (45) and rigid connection means positioned between the tracked wheels.

15 42. An automatic animal training system according to claim 1, characterized in that said mobile unit (66) comprises a lid (78) at the front region thereof for introducing the animal into the training device and an opening (80) is provided on the lid (78) for getting the head of the animal out of the mobile unit (66).

20 43. An automatic animal training system according to any one of the claims 1 and 42, characterized in that for the mobile unit (66), at least one thermometer (76) is provided on the animal, at least one respiration meter (75) is positioned the nose region of the animal, at least one needle means (71) is provided for taking blood sample, and at least one tub (72) is provided for accumulating blood sample taken from the animal.

25 44. An automatic animal training unit according to any one of the claims 1, 42 to 43, characterized in that plurality of cameras are provided to plurality of positions of the rear and lateral coverages.

45. A method for measuring training performances of the animals according to any one of the claims 1, 42 to 44 comprising the following steps of:

- measuring EKG.

- taking blood samples and identifying the level of blood cell (eritrosit), water rate in the blood (dehydration), lactic acid, enzyme level leucosis level in the blood sample,
- monitoring the nose, bronchus and stomach state of the animal by endoscopy,
- monitoring the respiration rate, CO<sub>2</sub> value, body temperature and urological state of the animal,
- performing radioscopic analyzes,
- identifying muscle strain rate of the animal

10 and these parameters are stored in a computer (68) embodied in the mobile unit (63).

46. An automatic animal training unit according claim 45, characterized in that the said computer is alternatively positioned in a region other than the mobile unit (68).

15 47. An automatic animal training system according to any one of the preceding claims, characterized in that plurality of side sliding means (87,89) are provided between said convex structures (7) and actuation means (84,85,86), preferably motors are positioned on the side sliding means (87,89) for stretching and loosening of the connection means (1,2,3).

20 48. An automatic animal training system according to any one of the preceding claims, characterized in that an electronic control unit (91) is provided for controlling displacement extent of the actuation means (84,85,86) positioned on the side sliding means (87,89).

25 49. An automatic animal training system according to any one of the preceding claims, characterized in that data of animal training distance are coded into said electronic control unit (91) for displacing of the actuation means (84,85,86) so that said connection means (1,2,3) are stretched and loosened.

50. An automatic animal training system according to any one of the preceding claims, characterized in that a saddle bear (92) fixed to a middle sliding means (88) between the side sliding means (87,89) is provided, and an upper spherical joint (93) disposed in the saddle bear (92), a fixed cylinder (95) connected to the upper spherical joint (93) and a movable cylinder (96) capable of moving in the fixed cylinder (95).

51. An automatic animal training system according to any one of the preceding claims, characterized in that at least one spring element (100) positioned in the fixed cylinder (95) along the axis thereof is provided, and a lower spherical joint (94) is positioned between the movable cylinder (96) and the saddle (16).

52. An automatic animal training system according to any one of the preceding claims, characterized in that an obstruction part (99) comprising a U form for restricting the movement of said upper spherical joint (93) is disposed in the saddle bear (92).

53. An automatic animal training system according to any one of the preceding claims, characterized in that an axial actuation means (101), a vertical actuation means (102), a horizontal actuation means for displacing the lateral coverages (15) in three perpendicular space directions are provided.

54. An automatic animal training system according to claim 56, characterized in that said actuation means are preferably hydraulic-based cylinder-piston mechanism.

55. An automatic animal training system according to any one of the preceding claims, characterized in that said lateral coverages (15) comprise at least one outer coverage (104) an inner coverage (105) capable of penetrating into the outer coverage (104), and a spring element (109) is placed between the outer and inner coverages (104,105).

56. An automatic animal training system according to any one of the preceding claims, characterized in that a housing (107) is embodied to the outer

coverage (104), and a slipway (108) is embodied to the inner coverage (105) and said slipway (108) is capable of introducing and leaving the housing (107).

57. An automatic animal training system according to any one of the preceding claims, characterized in that said spring element (109) is connected from one end to an outer leg (111) fixed to the outer coverage (104) and connected from the other end to an inner leg (112), and a middle spring (90) is positioned between these outer and inner legs (111,112).

58. An automatic animal training system according to claim 1, characterized in that said animal training device comprising said lateral coverages (15) and rear coverage (45) are integrated through an intermediary part (123) with a rear unit (124) comprising a self powered motor (121), a steering wheel (119) and pivot thereof, a valve (118) attached to the steering pivot, and rear wheels (122) are provided for holding the rear unit (124) and front wheels (113) actuated by hydraulic provided from the self powered motor (121) are provided and mechanical components associated with the front wheels (113) are provided, whereby defining an integrated animal training device.

10 59. An integrated automatic animal training system according to any one of the claim 1 and 58, characterized in that a pipe is provided for transmitting the hydraulic from the self powered motor (121) to the valve (118) and furthermore transmitting the hydraulic to a primary hydraulic line (117) or a secondary hydraulic line (125) from the valve (118) actuated through the steering wheel (119).

15 60. An automatic animal training system according to any one of the claims 1, 58 to 59, characterized in that a piston (116) comprising plurality of chambers in which the hydraulic is transmitted flowing from the primary hydraulic line (117) or the secondary hydraulic line (125) is provided and the piston (116) is placed to a piston actuating pivot (126).

20 61. An automatic animal training system according to any one of the claims 1, 58 to 60, characterized in that plurality of upper connecting rods (127) connected to the piston (116) placed to the piston actuating pivot (126) are provided.

25

30

**62.** An automatic animal training system according to any one of the claims 1, 58 to 61, characterized in that plurality of rotary pivots (114) fixed to the connecting rods (127) are provided, said rotary pivots (114) are extending along the vertical direction.

5 **63.** An automatic animal training system according to any one of the claims 1, 58 to 62, characterized in that at least one beam (128) connected to the connecting rods (127) and to the rotary pivots (114) is provided, said beam (128) is preferably parallel to the piston actuating pivot (126).

10 **64.** An automatic animal training system according to any one of the claims 1, 58 to 63, characterized in that plurality of lower connecting rods (132) connected to the rotary pivots (114) from the lower side thereof are provided.

15 **65.** An automatic animal training system according to any one of the claims 1, 58 to 64, characterized in that plurality of direction arms (115) connected from one end to the lower connection rods (132) and from the other end to the front wheels (113) are provided.

**66.** An automatic animal training system according to any one of the claims 1, 58 to 65, characterized in that the primary hydraulic line (117) and the secondary hydraulic line (125) are disposed in the lateral coverages (15).

20 **67.** An automatic animal training system according to any one of the claims 1, 58 to 66, characterized in that a harrow means (136) is provided preferably at the rear region of the rear unit (124) and the harrow means (136) is capable of displacing up and down directions through a harrow piston (137).

25 **68.** An automatic animal training system according to any one of the claims 1, 58 to 67, characterized in that a barrier part (135) is provided to the lateral coverages (15) for preventing the animal to displace into the training device.

**69.** An automatic animal training system according to any one of the claims 1, 58 to 68, characterized in that said barrier part (135) is provided to the lateral coverages (15) by virtue of holder pieces preferably comprising hydraulic piston mechanism.

70. An automatic animal training system comprising a horse training device driven by a tractor positioned front or rear region thereof and the lateral and rear sides (coverages) are covered by flexible material and at least one convex structure (7) surrounding the upper side of the training device and the legs thereof are positioned on the lateral sides of the training device characterized in that a valve (118) controlled by a steering wheel (119) positioned to the tractor at the rear region of the training device is provided and said valve (118) having preferably four openings for hydraulic flow through thereof, a piston (116) directed by hydraulic flow is provided and said piston (116) comprises a piston arm (138) connected to a directing beam (140), and curved bars (149) symmetrically connected to the directing beam (140), straight bars (150) connected from one end to the curved bar (149) and connected from the other end to connecting rods (151) are provided, and vertical beams (152) connected to the connecting rods (151) is provided and direction arms (115) connected from one end to the vertical beams (152) and from the other end to front wheels (113) are provided.

71. An automatic animal training system according to claim 70, characterized in that a hydraulic feeding line (143) for the association of a hydraulic storage and the valve (118), a hydraulic evacuation line (144) for the association of a hydraulic storage and the valve (118), a right hydraulic line (141) and a left hydraulic line (142) for directing the hydraulic from the valve (118) to the piston (116) are provided.

72. An automatic animal training system according to any one of the claims 70 to 71, characterized in that said directing beam (140) comprises a "T" like shape and the piston arm (138) is connected to vertical part of "T" like shaped directing beam (140).

73. An automatic animal training system according to any one of the claims 70 to 72, characterized in that an outer housing (146) for supporting the directing beam (140) is provided and the vertical part of "T" like shaped directing beam (140) is displaceable in a displacement opening (147) of the outer housing (146).

74. An automatic animal training system according to any one of the claims 70 to 74, characterized in that said directing beam (140) is disposed in the rear coverage and said curved bars (149) and straight bars (150) are disposed in the said lateral coverages.

5 75. An automatic animal training system according to any one of the claims 70 to 74, characterized in that a protective lid (153) movable in upward and downward directions for covering said piston (116) and said directing beam (140) is provided.

10 76. An automatic animal training system according to any one of the preceding claims, characterized in that at least one screwed actuator pivot (156) and at least one support pivot (157) are located alongside the convex structure legs (155) by virtue of upper bearings (160) and lower bearings (161).

15 77. An automatic animal training system according to any one of the preceding claims, characterized in that an actuation ring (158) inner surface screwed thereto and movable through the axis of the actuator pivot (156), and a support ring (159) connected to the actuation ring and movable through the axis of the support pivot (157) are provided.

20 78. An automatic animal training system according to any one of the preceding claims, characterized in that a motor (168) preferably positioned at the bottom side of the actuator pivot (156) for rotating thereof is provided.

79. An automatic animal training system according to any one of the preceding claims, characterized in that a wheel (163) connected to the actuation ring (158) through an actuator ring arm (165) and a wheel arm (164) is provided.

25 80. An automatic animal training system according to any one of the preceding claims, characterized in that a follower (162) comprising an eccentric pivot combination and the wheel (163) is movable thereon is provided.

81. An automatic animal training system according to any one of the preceding claims, characterized in that a support ring arm (166) pinned from one end to

the wheel (163) center and connected from other end to a holder arm (167) pinned to a fixed arm (179) connected to support ring (159) is provided.

82. An automatic animal training system according to any one of the preceding claims, characterized in that covering means (178) connected to the holder arm (167) is provided.

83. An automatic animal training system according to any one of the preceding claims, characterized in that mechanical components holding and actuating the covering means (178) are disposed both convex structure legs (155) for covering front and rear side of the animal in the training device.

84. An automatic animal training system according to any one of the preceding claims, characterized in that air bags are provided in the covering means (178).

85. An automatic animal training system according to any one of the preceding claims, characterized in that horizontal sledges (170) associated with the convex structure legs (155) are disposed in the lateral coverages (15).

86. An automatic animal training system according to any one of the preceding claims, characterized in that a sledge spring (178) connected from one end to the horizontal sledge (170) and connected from other end to a sledge motor (172) is provided.

87. An automatic animal training system according to any one of the preceding claims, characterized in that a displacement opening (173) is formed in the lateral coverages for displacing the convex structure legs (155) therein.

88. An automatic animal training system according to any one of the preceding claims, characterized in that a housing (45) is provided bilateral sides of the lateral coverages (15) and a magnet (175), preferably an electro-magnet, is disposed therein.

89. An automatic animal training system according to any one of the preceding claims, characterized in that a rod (177) movable in the housing (45) and a ring

(176) connected to the rod (177) and connected to the saddle (16) are provided.

90. An automatic animal training system according to any one of the preceding claims, characterized in that said ring (176) is capable of moving through a magnetic force provided by the electro-magnet (175).

WO 02/082892

PCT/TR02/00016

1/23

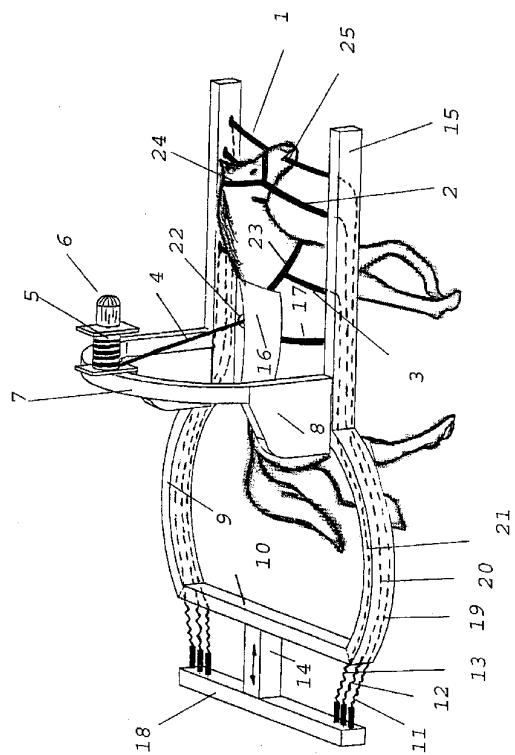



FIG. 1

WO 02/082892

PCT/TR02/00016

2/23

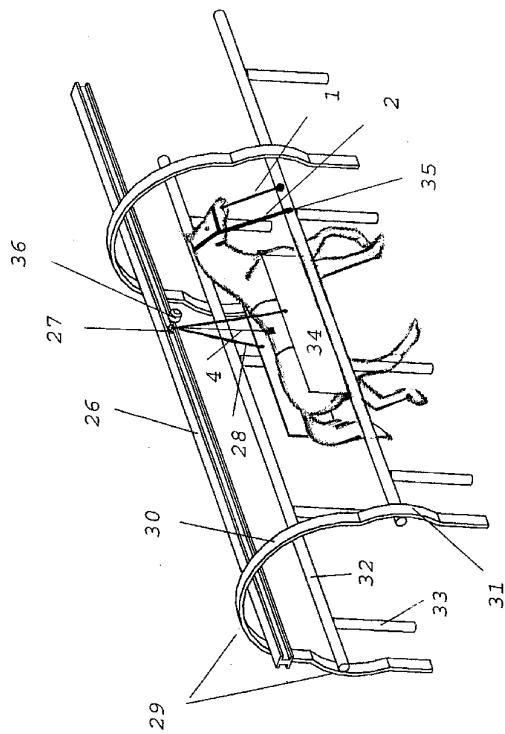



FIG. 2A

WO 02/082892

PCT/TR02/00016

3/23

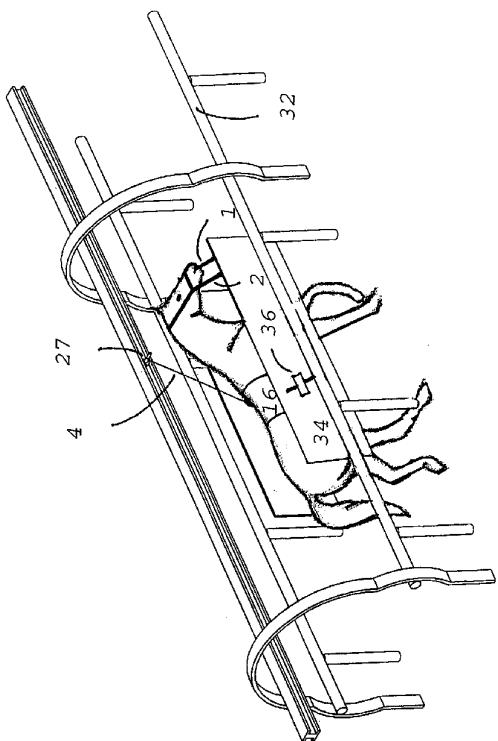



FIG. 2B

WO 02/082892

PCT/TR02/00016

4/23

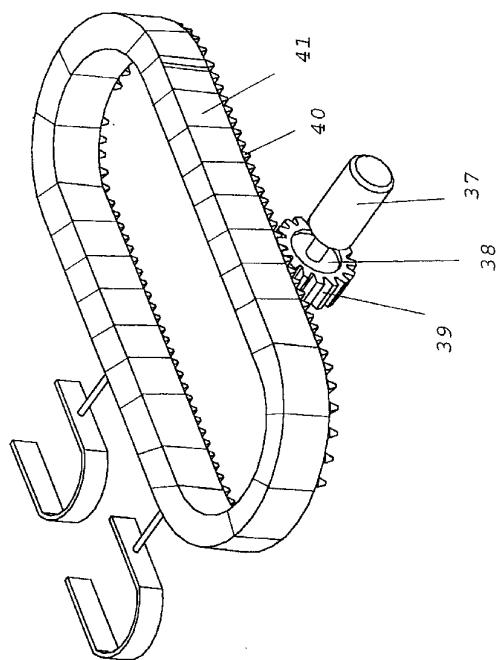
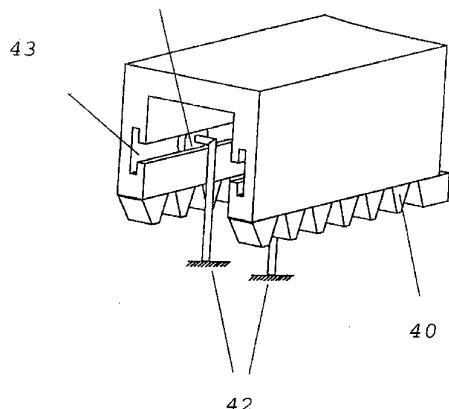




FIG. 3

44



42

FIG.4A

WO 02/082892

PCT/TR02/00016

6/23

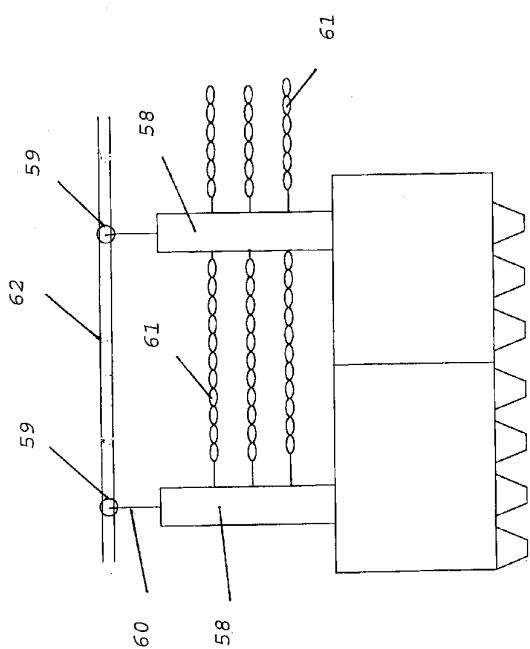



FIG. 4B

WO 02/082892

PCT/TR02/00016

7/23

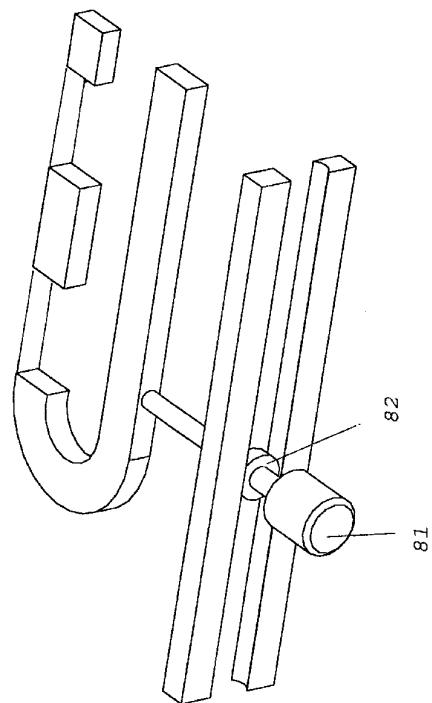



FIG. 5

WO 02/082892

PCT/TR02/00016

8/23

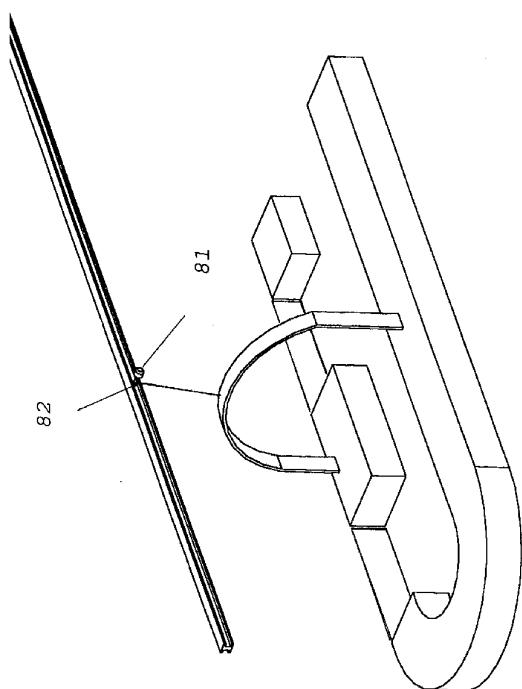



FIG. 6

WO 02/082892

PCT/TR02/00016

9/23

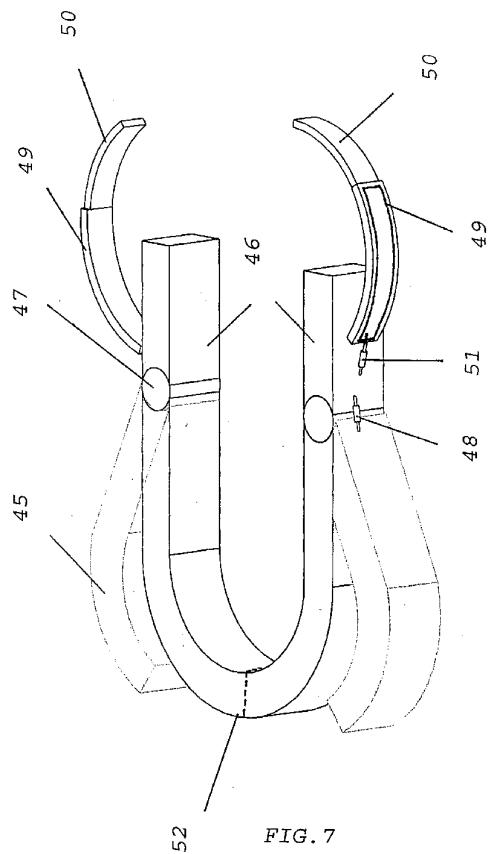



FIG. 7

WO 02/082892

PCT/TR02/00016

10/23

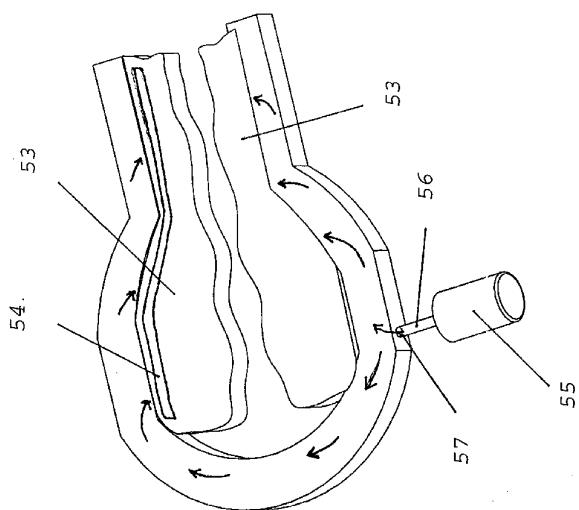



FIG. 8

WO 02/082892

PCT/TR02/00016

11/23

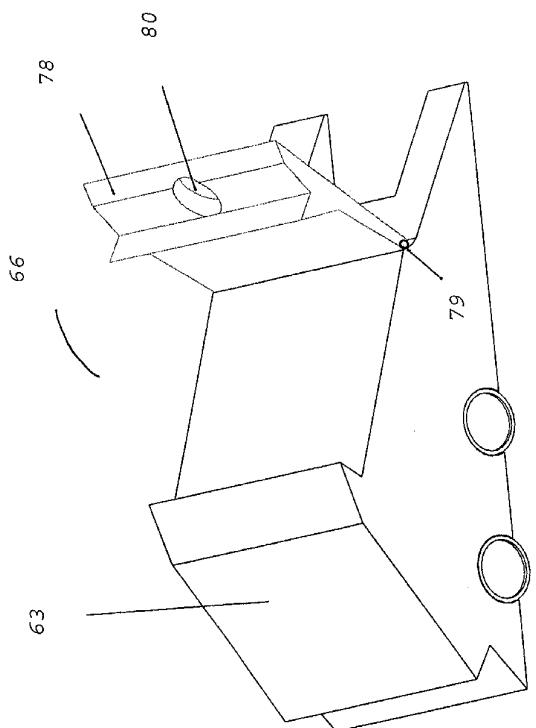



FIG. 9

WO 02/082892

PCT/TR02/00016

12/23

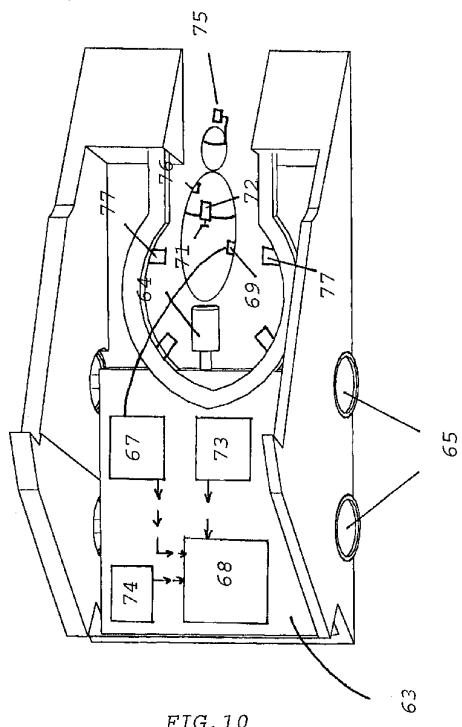



FIG. 10

WO 02/082892

PCT/TR02/00016

13/23

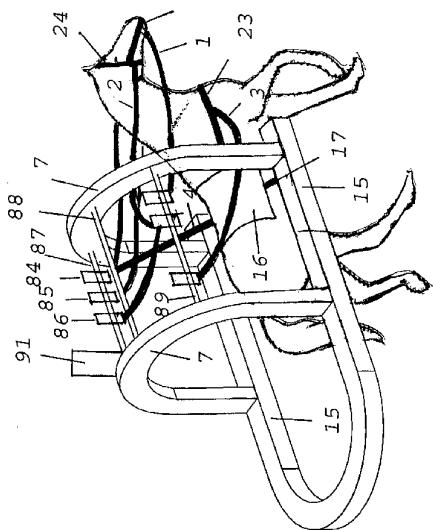



FIG. 11

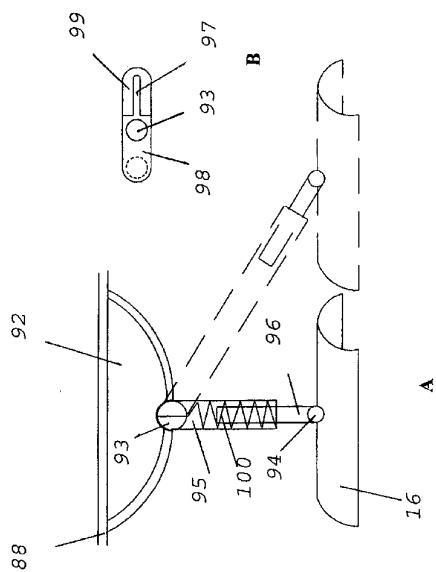



FIG. 12

WO 02/082892

PCT/TR02/00016

15/23

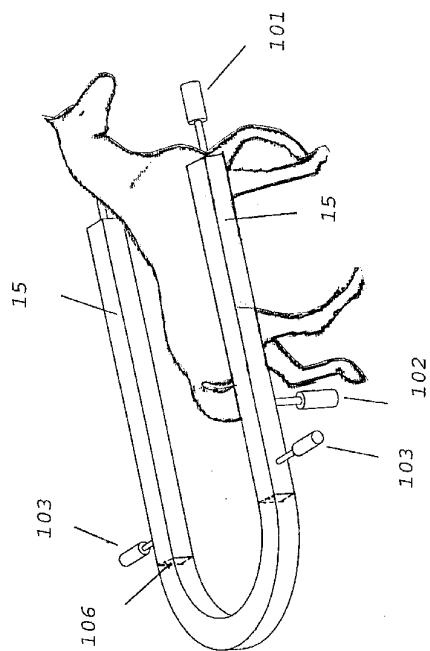



FIG. 13

WO 02/082892

PCT/TR02/00016

16/23

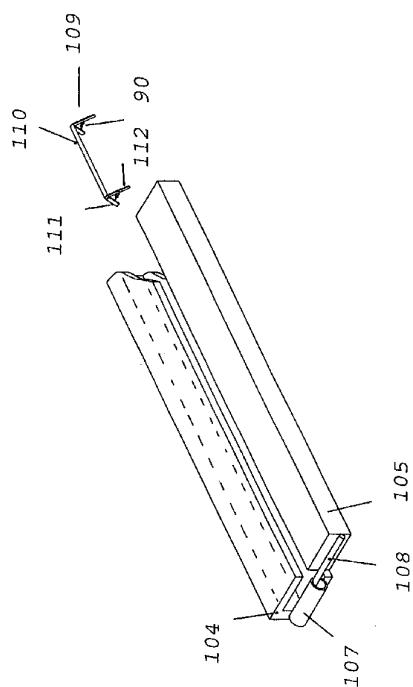



FIG. 14

WO 02/082892

17/23

PCT/TR02/00016

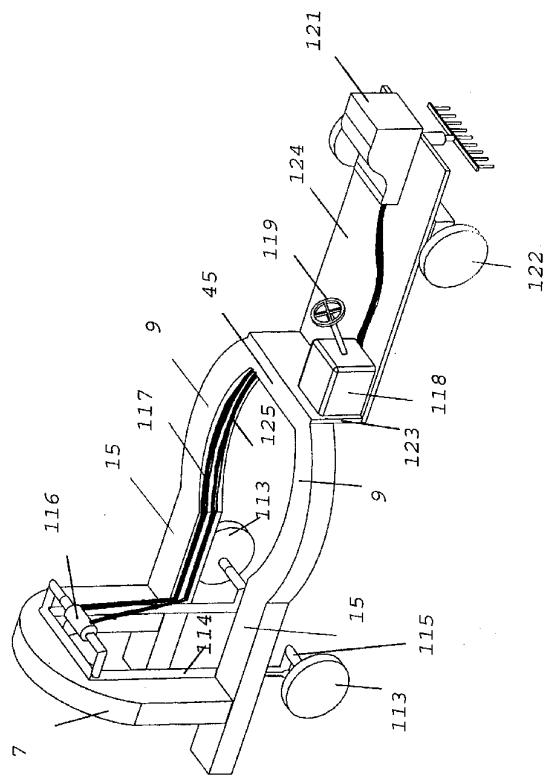



FIG. 15

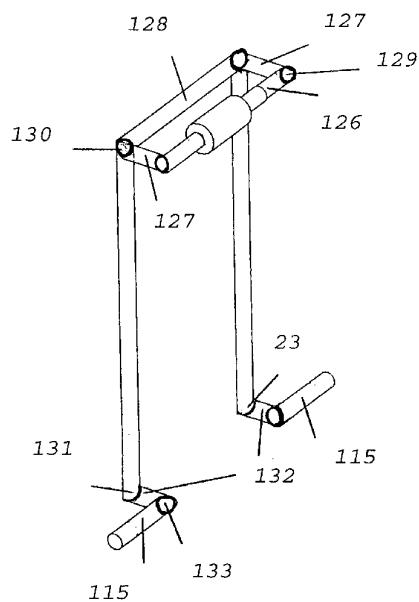



FIG.16

WO 02/082892

PCT/TR02/00016

19/23

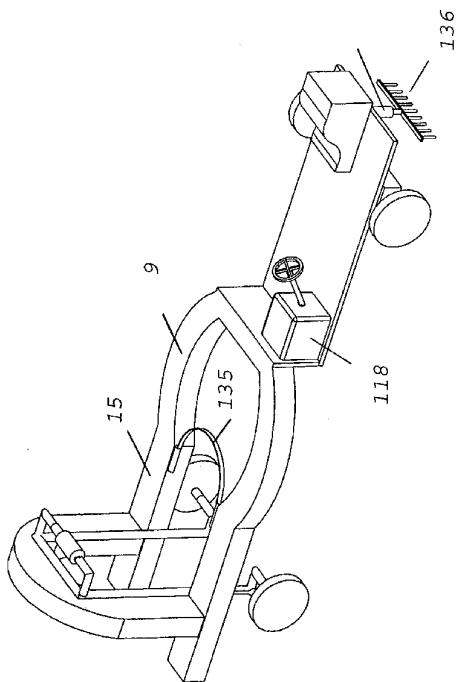



FIG.17

WO 02/082892

PCT/TR02/00016

20/23

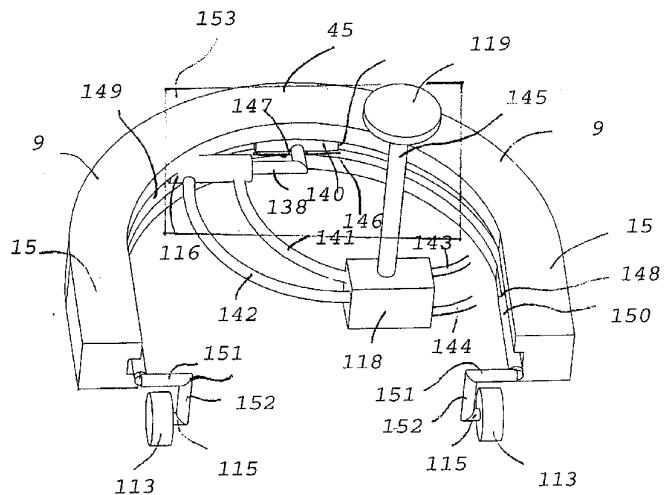



FIG. 18

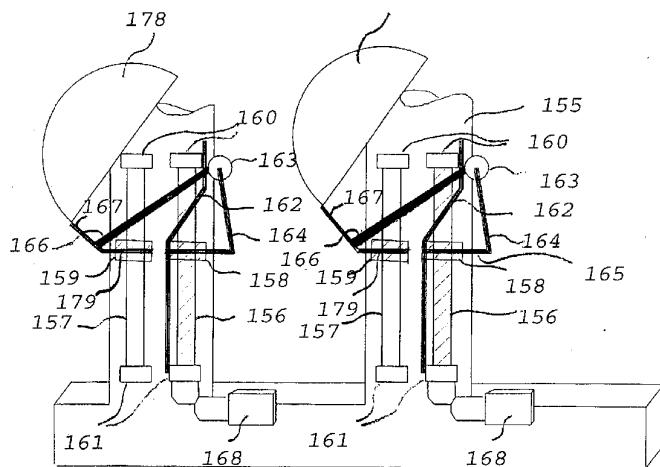



FIG. 19

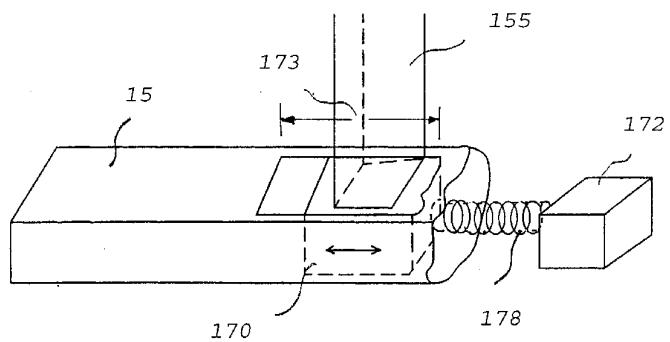



FIG. 20

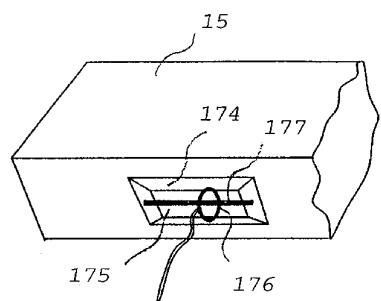



FIG. 21

## 【国際公開パンフレット（コレクトバージョン）】

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization  
International Bureau(43) International Publication Date  
24 October 2002 (24.10.2002)

PCT

(10) International Publication Number  
WO 02/082892 A3(51) International Patent Classification<sup>5</sup>: A01K 15/02CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,  
GM, HR, HU, ID, IL, IN, IS, JP, KU, KG, KP, KR, KZ, LC,  
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,  
MX, MZ, NO, NZ, OM, PII, PL, PT, RO, RU, SD, SE, SG,  
SI, SK, SL, TI, TM, TN, TR, TT, TZ, UA, UG, US, UZ,  
VN, YU, ZA, ZM, ZW

(21) International Application Number: PCT/TR02/00016

(22) International Filing Date: 17 April 2002 (17.04.2002)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

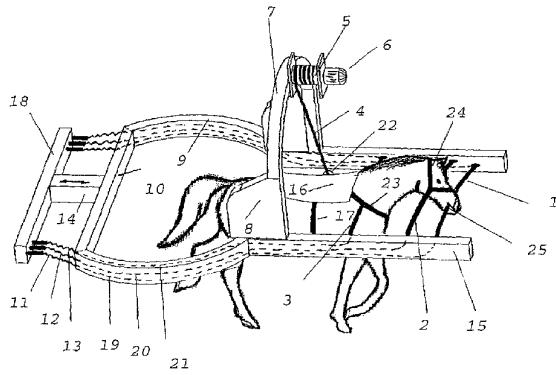
|            |                               |    |
|------------|-------------------------------|----|
| 2001/01003 | 17 April 2001 (17.04.2001)    | TR |
| 2001/01994 | 11 July 2001 (11.07.2001)     | TR |
| 2001/03372 | 26 November 2001 (26.11.2001) | TR |
| 2002/00639 | 11 March 2002 (11.03.2002)    | TR |

(84) Designated States (regional): ARIPO patent (GL, GM,  
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),  
Birmanian patent (AM, AZ, BY, KG, KZ, MD, RU, TI, TM),  
European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR,  
GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent  
(BF, BJ, CG, CI, CM, GA, GN, GQ, GW, ML, MR,  
NE, SN, TD, TG).

Published:

— with international search report

(88) Date of publication of the international search report:


27 March 2003

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: AUTOMATIC SYSTEM-BASED ANIMAL TRAINING DEVICE



WO 02/082892 A3



(57) Abstract: This invention relates to an automatic animal training system serving a physical performance improvement and simulation means for the animals of particularly horse, camel or similar animals joining races throughout the world.

## 【国際調査報告】

| INTERNATIONAL SEARCH REPORT                                                                                                                                                           |                                                                                                                 | tional Application No<br>PCT/TR 02/00016 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------|
| A. CLASSIFICATION OF SUBJECT MATTER<br>IPC 7 A01K15/02                                                                                                                                |                                                                                                                 |                                          |
| According to International Patent Classification (IPC) or to both national classification and IPC                                                                                     |                                                                                                                 |                                          |
| B. FIELDS SEARCHED<br>Minimum documentation searched (classification system followed by classification symbols)<br>IPC 7 A01K                                                         |                                                                                                                 |                                          |
| Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched                                                         |                                                                                                                 |                                          |
| Electronic data base consulted during the international search (name of data base and, where practical, search terms used)<br>EPO-Internal, WPI Data, PAJ                             |                                                                                                                 |                                          |
| C. DOCUMENTS CONSIDERED TO BE RELEVANT                                                                                                                                                |                                                                                                                 |                                          |
| Category *                                                                                                                                                                            | Citation of document, with indication, where appropriate, of the relevant passages                              | Relevant to claim No.                    |
| A                                                                                                                                                                                     | US 4 266 508 A (MCNULTY)<br>12 May 1981 (1981-05-12)<br>cited in the application<br>the whole document<br>----- | 1,70                                     |
| A                                                                                                                                                                                     | DE 198 34 257 A (MAUCH FRANK)<br>10 February 2000 (2000-02-10)<br>the whole document<br>-----                   | 45                                       |
| <input type="checkbox"/> Further documents are listed in the continuation of box C. <input checked="" type="checkbox"/> Patent family members are listed in annex.                    |                                                                                                                 | .....                                    |
| * Special categories of cited documents :                                                                                                                                             |                                                                                                                 |                                          |
| *A* document relating the general state of the art which is not considered to be of particular relevance                                                                              |                                                                                                                 |                                          |
| *E* earlier document but published on or after the international filing date                                                                                                          |                                                                                                                 |                                          |
| *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another document or for other special reasons (as specified)          |                                                                                                                 |                                          |
| *O* document referring to an oral disclosure, use, exhibition or other means                                                                                                          |                                                                                                                 |                                          |
| *P* document published prior to the international filing date but later than the priority date claimed                                                                                |                                                                                                                 |                                          |
| Date of the actual completion of the International search<br>9 October 2002                                                                                                           | Date of mailing of the International search report<br>13.11.02                                                  |                                          |
| Name and mailing address of the ISA<br>European Patent Office, P.B. 5518 Patentlaan 2<br>NL-2233 RD The Hague<br>Tel. (+31-70) 340-2040, Tx. 31 651 esp ol,<br>Fax. (+31-70) 340-3016 | Authorized officer<br>VON ARX, V.                                                                               |                                          |

Form PCT/ISA/210 (second sheet) (July 1992)

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                         |                          |                                                                         |                                     |                                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------|-------------------------------------------------------------------------|-------------------------------------|---------------------------------------------------------------|
| <b>INTERNATIONAL SEARCH REPORT</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                         |                          |                                                                         |                                     |                                                               |
| International Application No.<br>PCT/TR 02/00016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                         |                          |                                                                         |                                     |                                                               |
| <b>Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                         |                          |                                                                         |                                     |                                                               |
| <p>This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:</p> <ol style="list-style-type: none"> <li>1. <input type="checkbox"/> Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:</li> <br/> <li>2. <input type="checkbox"/> Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:</li> <br/> <li>3. <input type="checkbox"/> Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).</li> </ol>                                                                                                                                                                                                                                                                                                                    |                                                                         |                          |                                                                         |                                     |                                                               |
| <b>Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                         |                          |                                                                         |                                     |                                                               |
| <p>This International Searching Authority found multiple inventions in this international application, as follows:</p> <p style="text-align: center;">see additional sheet</p> <ol style="list-style-type: none"> <li>1. <input checked="" type="checkbox"/> As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.</li> <li>2. <input type="checkbox"/> As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.</li> <li>3. <input type="checkbox"/> As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:</li> <br/> <li>4. <input type="checkbox"/> No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:</li> </ol> |                                                                         |                          |                                                                         |                                     |                                                               |
| <p><b>Remark on Protest</b></p> <table style="width: 100%; border-collapse: collapse;"> <tr> <td style="width: 15%; text-align: right; padding-right: 5px;"><input type="checkbox"/></td> <td>The additional search fees were accompanied by the applicant's protest.</td> </tr> <tr> <td style="text-align: right; padding-right: 5px;"><input checked="" type="checkbox"/></td> <td>No protest accompanied the payment of additional search fees.</td> </tr> </table>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                         | <input type="checkbox"/> | The additional search fees were accompanied by the applicant's protest. | <input checked="" type="checkbox"/> | No protest accompanied the payment of additional search fees. |
| <input type="checkbox"/>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | The additional search fees were accompanied by the applicant's protest. |                          |                                                                         |                                     |                                                               |
| <input checked="" type="checkbox"/>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | No protest accompanied the payment of additional search fees.           |                          |                                                                         |                                     |                                                               |

Form PCT/ISA/210 (continuation of first sheet (1)) (July 1996)

International Application No. PCT/FR 02/00016

## FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

1. Claims: 1-69 and 76 to 90 insofar as related to claims 1-69

Automatic animal training system with saddle connection means, a pre-training device and a mobile measuring unit and performance measuring method

2. Claims: 70-75 and 76 to 90 insofar as related to claims 70-75

Automatic animal training system with hydraulic steering means

| INTERNATIONAL SEARCH REPORT<br>Information on patent family members |                  |                         |                  | National Application No<br>PCT/TR 02/00016 |  |
|---------------------------------------------------------------------|------------------|-------------------------|------------------|--------------------------------------------|--|
| Patent document cited in search report                              | Publication date | Patent family member(s) | Publication date |                                            |  |
| US 4266508                                                          | A 12-05-1981     | NONE                    |                  |                                            |  |
| DE 19834257                                                         | A 10-02-2000     | DE 19834257 A1          | 10-02-2000       |                                            |  |

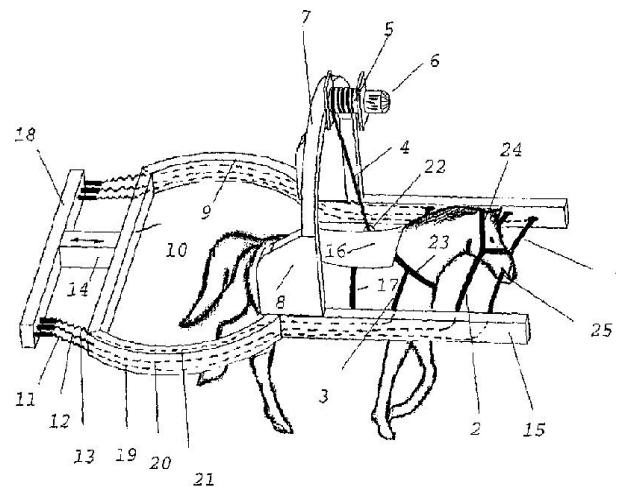
Form PCT/ISA/210 (Gentle family annex) (July 1992)

---

フロントページの続き

(31) 優先権主張番号 2002/00639

(32) 優先日 平成14年3月11日(2002.3.11)


(33) 優先権主張国 トルコ(TR)

(81) 指定国 AP(GH,GM,KE,LS,MW,MZ,SD,SL,SZ,TZ,UG,ZM,ZW),EA(AM,AZ,BY,KG,KZ,MD,RU,TJ,TM),EP(AT, BE,CH,CY,DE,DK,ES,FI,FR,GB,GR,IE,IT,LU,MC,NL,PT,SE,TR),OA(BF,BJ,CF,CG,CI,CM,GA,GN,GQ,GW,ML,MR,NE,SN, TD,TG),AE,AG,AL,AM,AT,AU,AZ,BA,BB,BG,BR,BY,BZ,CA,CH,CN,CO,CR,CU,CZ,DE,DK,DM,DZ,EC,EE,ES,FI,GB,GD,GE, GH,GM,HR,HU, ID, IL, IN, IS,JP,KE,KG,KP,KR,KZ,LK,LR,LS,LT,LU,LV,MA,MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, P L,PT,RO,RU,SD,SE,SG,SI,SK,SL,TJ,TM,TN,TR,TT,TZ,UA,UG,US,UZ,VN,YU,ZA,ZM,ZW

|                |                                                                                                               |         |            |
|----------------|---------------------------------------------------------------------------------------------------------------|---------|------------|
| 专利名称(译)        | 自动式动物训练装置                                                                                                     |         |            |
| 公开(公告)号        | <a href="#">JP2004529641A</a>                                                                                 | 公开(公告)日 | 2004-09-30 |
| 申请号            | JP2002580712                                                                                                  | 申请日     | 2002-04-17 |
| [标]申请(专利权)人(译) | KURT MEHMET                                                                                                   |         |            |
| 申请(专利权)人(译)    | 库尔特·穆罕默德                                                                                                      |         |            |
| [标]发明人         | クルト・メーメット                                                                                                     |         |            |
| 发明人            | クルト・メーメット                                                                                                     |         |            |
| IPC分类号         | A01K15/02 A01K67/00 A61B5/01 A61B5/145 A61B5/00                                                               |         |            |
| CPC分类号         | A01K15/027                                                                                                    |         |            |
| FI分类号          | A01K15/02 A01K67/00.D A61B5/14.310 A61B5/00.101.E                                                             |         |            |
| F-TERM分类号      | 4C038/KK00 4C038/KK01 4C038/KK04 4C117/XA10 4C117/XB01 4C117/XB20 4C117/XE17 4C117/XE23 4C117/XE24 4C117/XH14 |         |            |
| 代理人(译)         | 足立勉                                                                                                           |         |            |
| 优先权            | 200101003 2001-04-17 TR<br>200101994 2001-07-11 TR<br>200103372 2001-11-26 TR<br>200200639 2002-03-11 TR      |         |            |
| 外部链接           | <a href="#">Espacenet</a>                                                                                     |         |            |

### 摘要(译)

自动动物训练系统技术领域本发明涉及一种自动动物训练系统，该系统用于提高世界各地参加比赛的动物的马，骆驼等的身体能力和模拟装置的作用。

